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BACKGROUND 

•	 The Rasch model and its extensions have become popular 
tools for assessing the psychometric properties of 
patient-reported outcome (PRO) instruments. 

•	 Unidimensionality is a key assumption of the Rasch model. 
To gain the advantages of Rasch modeling, it is important 
that this assumption has not been violated.

•	 There has been much debate about whether to use factor 
analysis as a first step to assess dimensionality or whether 
to use the Rasch model directly to identify items that do not 
fit a unidimensional model.

•	 Existing literature provides limitations to both methods as 
follows:

–	 Factor analysis may identify too many factors: Factor 
analysis usually reports items clustering at different 
performance levels (item difficulty) as different dimensions; 
thus, spurious factors (underlying concepts) may be 
identified.1

–	 The Rasch model may not identify all relevant factors: The 
Rasch model constructs an interval variable from the 
dominant dimension in the data. This dominant dimension 
may be a hybrid of two or more factors (underlying 
concepts).2 Item-fit statistics may not be sensitive in 
detecting off-dimension items.

OBJECTIVE

•	 To compare the use of factor analysis with the use of 
Rasch modeling to examine the assumption of 
unidimensionality and provide recommendations for 
future application of these methods.

METHODS

•	 Simulated data that represent a typical PRO instrument were 
generated based on the following variables: sample size, 
number of factors, and correlation among factors. 

•	 Figure 1 shows the design of the data simulation across the 
variables and the number of different conditions that it 
generated. 

RESULTS

Exploratory Factor Analysis Key Results

•	 Table 2 presents the number of eigenvalues greater 
than 1 across the simulation conditions. Table 3 
presents the number of simulated sets with goodness-
of-fit indices meeting the criteria for one-, two-, or 
three-factor solutions.

•	 Results for sample sizes of 200 and 400 with 
corresponding factors and correlations were 
very similar. 

•	 Generally, EFA correctly identified the number of factors.

–	 Ten simulations were conducted for a sample size of 
200 with one factor, and only one set had two 
eigenvalues greater than 1. This finding could be 
attributed to the item location factor. However, this 
spurious factor was not detected when the sample 
size was 400. For all one-factor sets, goodness-of-fit 
indices of one-factor solution met the criteria for 
adequate fit. 

–	 EFA correctly identified two factors for all two-factor 
simulations, regardless of sample size and magnitude 
of correlation.

–	 EFA correctly identified three factors for all 20 
noncorrelated three-factor simulated data sets. Of the 
20 correlated three-factor solutions conducted, six 
sets identified two factors based on the eigenvalues-
greater-than-1 rule, and six sets identified two factors 
based on goodness-of-fit indices (4 when sample 
size = 200; 2 when sample size = 400).

Rasch Model Key Results

•	 Table 4 presents the Rasch model results across the 
12 simulation conditions. Three methods were used to 
evaluate the detection of the number of true factors 
(item-fit residuals, item-fit chi-square, principal 
component analysis of the residuals).

•	 More misfitting items were identified in the 
simulations with a sample size of 400 than sample 
size of 200. 

•	 Generally, the Rasch model underestimated the 
number of items that should be associated with a 
separate factor.

•	 All 20 one-factor Rasch model simulations resulted in 
no misfitting items, and none of the principal 
components based on the residuals accounted for 
more than 20% of the residual variance.

•	 The two-factor Rasch model simulations yielded the 
following results:

–	 The two-factor Rasch simulations with no correlation 
between factors resulted in zero to five items with 
identified misfit. Simulated correlations of 0.4 resulted 
in zero or one misfitting items.

–	 Simulated correlations of 0.7 resulted in no 
misfitting items.

–	 Simulated correlations of 0.0 or 0.4 resulted in one 
principal component accounting for more than 20% 
of the residual variance.

–	 Correlations of 0.7 resulted in no residual principal 
component accounting for more than 20% of the 
residual variance.

•	 Similarly, for the three-factor simulations, the Rasch 
model identified fewer misfitting items for correlated 
factors and also detected no residual principal 
component accounting for more than 20% of the 
residual variance.

DISCUSSION

•	 In almost all conditions, EFA correctly identified the number of 
factors; the exception was simulations with three correlated factors.

–	 When there were three correlated factors, EFA identified two factors 
an average of 30% of the time where one factor comprised the 
largest number of items (7 items) and the other factor comprised 
the remaining items. 

–	 The item location effect was barely detected when there was only 
one factor (1 of 10 data sets when sample size = 200). 

–	 The results showed that eigenvalue and goodness-of-fit indices 
performed well at identifying underlying concepts, but the best 
strategy was to use both criteria in combination with factor 
loadings. This method identified not only the number of factors, but 
also the items loading on each of the factors. 

•	 The use of item-fit statistics to identify off-dimension items in the 
Rasch model analysis yielded inconsistent results. The number of 
items identified as misfitting varied from zero to six when there 
was more than one factor. 

–	 The detection of off-dimension items was better with the larger sample 
size (N = 400) but was worse when the factors correlated highly. 

–	 When correlation between two factors was as high as 0.7, no items 
were identified as misfitting. This was not surprising, given that the 
Rasch model fit the data with the hybrid of the correlated factors as 
the underlying dimension. 

–	 In most situations, however, the principal component analysis of 
the residuals suggested that the items were not unidimensional.

CONCLUSIONS

•	 The decision to conduct Rasch model analysis first or factor 
analysis first depends on the rationale and objective of the PRO 
measure under development. 

•	 Rasch model analysis can be conducted first if the objective is to 
create a unidimensional score scale that summarizes the items as a 
whole without concern for the underlying concept or concepts. 

–	 The unidimensional interval scale is then a combination of the 
underlying concepts predominately being assessed by the final set 
of items.

•	 Factor analysis can be conducted first if the objective is to explore 
the underlying concepts that the items are measuring, with the 
potential to create meaningful subscale scores.

–	 In this case, factor analysis enables researchers to identify the 
concepts, as well as the set of items that assesses each concept and 
then determine the next development steps (e.g., to focus on 
particular dimensions, develop additional items for dimensions with 
few items).
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Figure 1.  Study Variables and Simulation Conditions

n/a = not applicable; no. = number. 

•	 Ten simulated data sets were generated for each of the 
12 conditions, for a total of 120 data sets (Figure 1). 

•	 Each simulated data set contained 15 items, and all items 
had five response categories. 

•	 Exploratory factor analysis (EFA) was conducted using M-plus.3

–	 The number of factors identified by the EFA was determined 
by examining the eigenvalues; the model goodness-of-fit 
statistics, including comparative fit index (> 0.95), root mean 
square error of approximation (< 0.05), and squared root 
mean residual (< 0.05); and the factor loadings. 

•	 Rasch model analysis was conducted using RUMM2030.4

–	 Individual item fit was examined by item-fit residual (< –2.5  or 
> 2.5 flagged as misfit) and item-fit chi-square (P < 0.001 
flagged as misfit), and unidimensionality was examined by 
the principal component analysis of the residuals (residual 
variance accounted > 20%).

•	 Table 1 shows the detailed parameters used for each of the 
variables for the data simulation. 

Table 1.  Parameters for the Data Simulation

Model Andrich’s rating scale model

Response category 5

Sample sizes 200 and 400

Number of factors 1 (control), 2, and 3

Number of items 1 factor = 15 (control)

2 factors = 9, 6

3 factors = 7, 4, 4

Correlation among factors 1 factor = n/a (control)

2 factors = (control)

2 factors = (moderately  
correlated)

2 factors = (highly correlated)

3 factors =
 

(control)

3 factors = (moderately/highly 
correlated)

Item locations Odd-number items normal (–0.7, 0.7)

Even-number items normal (0.7, 0.7)

Difference between the 
threshold parameters Uniform (0, 1)

Theta parameters Normal (0, 1)

Table 2.  EFA: Percentages of Simulated Sets With Eigenvalues Greater Than 1 

Simulated Sample Size Number of Simulated 
Factors Simulated Correlations One Eigenvalue > 1 Two Eigenvalues > 1 Three Eigenvalues > 1

200 1 n/a 90% 10% 0%
200 2 0.0 0% 100% 0%
200 2 0.4 0% 100% 0%
200 2 0.7 0% 100% 0%
200 3 0.0 0% 0% 100%

200 3 0.4-0.7 0% 30% 70%

400 1 n/a 100% 0% 0%
400 2 0.0 0% 100% 0%
400 2 0.4 0% 100% 0%
400 2 0.7 0% 100% 0%
400 3 0.0 0% 0% 100%

400 3 0.4-0.7 0% 30% 70%
Note: Percentages are based on a total of 10 simulated data sets under each condition.
Note: Numbers in blue  indicate results that align with the number of factors that were simulated; numbers in red indicate results that do not align with the number of factors that were simulated. 

Table 3.  EFA: Percentages of Simulated Sets With Model Goodness-of-Fit Indices Meeting the Criteria for One-, Two-, or Three-Factor Solution

Simulated Sample Size Number of  
Simulated Factors Simulated Correlations 1-Factor Solution 2-Factor Solution 3-Factor Solution

200 1 n/a 100% -- --
200 2 0.0 0% 100% --
200 2 0.4 0% 100% --
200 2 0.7 0% 100% --
200 3 0.0 0% 0% 100%

200 3 0.4-0.7 0% 40% 60%

400 1 n/a 100% -- --
400 2 0.0 0% 100% --
400 2 0.4 0% 100% --
400 2 0.7 0% 100% --
400 3 0.0 0% 0% 100%

400 3 0.4-0.7 0% 20% 80%
Note: Percentages are based on total of 10 simulated data sets under each condition
Note: Numbers in blue  indicate results that align with the number of factors that were simulated; numbers in red indicate results that do not align with the number of factors that were simulated.
Note: �Based on the parsimony principal, the counts did not proceed to higher factor solutions when the parsimony model met the criteria.

Table 4.  Rasch Model Analysis: Item-Level Misfit and Residual Principal Component Analysis

Simulated Sample Size Number of Simulated 
Factors Simulated Correlations

Items With Misfit 
Residuals Residuals 

≥|2.5|, Mean  
(Min-Max)

Items With Item Misfit 
Chi-square 

 P < 0.001, Mean  
(Min-Max)

Residual Principal 
Component Variance 

Accounted > 20%, Mean  
(Min-Max)

200 1 n/a 0 (0-0) 0 (0-0) 0 (0-0)
200 2 0.0 0.7 (0-2) 0.9 (0-3) 1.0 (1-1)
200 2 0.4 0.2 (0-1) 0.2 (0-1) 1.0 (1-1)
200 2 0.7 0 (0-0) 0 (0-0) 0 (0-0)
200 3 0.0 0.3 (0-1) 0.3 (0-1) 0.9 (0-1)
200 3 0.4-0.7 0 (0-0) 0.1 (0-1) 0.5 (0-1)
400 1 n/a 0 (0-0) 0 (0-0) 0 (0-0)
400 2 0.0 1.2 (0-3) 1.4 (0-5) 1.0 (1-1)
400 2 0.4 0.1 (0-1) 0 (0-0) 1.0 (1-1)
400 2 0.7 0 (0-0) 0 (0-0) 0 (0-0)
400 3 0.0 2.2 (0-6) 2.1 (0-6) 1.0 (1-1)
400 3 0.4-0.7 0.5 (0-2) (0-0) 0.8 (0-1)

min = minimum; max = maximum.


