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Abstract: Participants in studies investigating COVID-19 vaccines commonly report reactogenicity
events, and concerns about side effects may lead to a reluctance to receive updated COVID-19
vaccinations. A real-world, post hoc analysis, observational 2019nCoV-406 study was conducted to
examine reactogenicity within the first 2 days after vaccination with either a protein-based vaccine
(NVX-CoV2373) or an mRNA vaccine (BNT162b2 or mRNA-1273) in individuals who previously
completed a primary series. Propensity score adjustments were conducted to address potential
confounding. The analysis included 1130 participants who received a booster dose of NVX-CoV2373
(n = 303) or an mRNA vaccine (n = 827) during the study period. Within the first 2 days after
vaccination, solicited systemic reactogenicity events (adjusted) were reported in 60.5% of participants
who received NVX-CoV2373 compared with 84.3% of participants who received an mRNA vaccine;
moreover, 33.9% and 61.4%, respectively, reported ≥3 systemic reactogenicity symptoms. The
adjusted mean (95% CI) number of systemic symptoms was 1.8 (1.6–2.0) and 3.2 (3.0–3.4), respectively.
Local reactogenicity events (adjusted) were reported in 73.4% and 91.7% of participants who received
NVX-CoV2373 and mRNA vaccines, respectively; the adjusted mean (95% CI) number of local
symptoms was 1.5 (1.33–1.61) and 2.4 (2.31–2.52), respectively. These results support the use of
adjuvanted, protein-based NVX-CoV2373 as an immunization option with lower reactogenicity
than mRNAs.

Keywords: booster; COVID-19; reactogenicity; real-world evidence; SARS-CoV-2; NVX-CoV2373;
mRNA

1. Introduction

To date, multiple types of vaccines have been developed to protect against COVID-19.
As the need for additional COVID-19 vaccination continues, messenger RNA (mRNA)-
and protein-based vaccines are expected to be the most widely utilized platforms. The
mRNA COVID-19 vaccines developed by Pfizer (BNT162b2) and Moderna (mRNA-1273)
are approved for use in the United States (US) and Canada [1–3], and a protein-based
vaccine formulated with saponin-based Matrix-M™ adjuvant developed by Novavax is
authorized for use in the US and approved for use in Canada [3,4].

Participants in COVID-19 vaccine clinical trials have commonly reported mild and
transient reactogenicity events within 7 days of receiving a vaccine, with many events
resolving within 2 days post-vaccination [5–11]. These symptoms include local (injection-
site) reactions (pain, tenderness, erythema, or swelling) or systemic reactions (fatigue,
malaise, muscle pain, joint pain, nausea/vomiting, headache, or fever), which may increase
with subsequent doses of a COVID-19 vaccine [6,9–12]. Local and systemic reactions

Vaccines 2024, 12, 802. https://doi.org/10.3390/vaccines12070802 https://www.mdpi.com/journal/vaccines

https://doi.org/10.3390/vaccines12070802
https://doi.org/10.3390/vaccines12070802
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com
https://orcid.org/0009-0001-2509-1098
https://orcid.org/0000-0002-5838-812X
https://doi.org/10.3390/vaccines12070802
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com/article/10.3390/vaccines12070802?type=check_update&version=1


Vaccines 2024, 12, 802 2 of 14

are also commonly reported for immunizations targeting infectious diseases other than
COVID-19 (e.g., influenza or shingles) [13,14]. Of note, studies comparing reactogenicity
have generally found a higher incidence of local and systemic events following the receipt
of mRNA COVID-19 vaccines compared with influenza and other non–COVID-19 vaccines,
as well as a higher frequency of reactogenicity-associated medication use, sick leave, and
doctor’s visits [15,16].

COVID-19-vaccine–related reactogenicity events can affect work and other daily activ-
ities, leading to absenteeism from work [17,18] and presenteeism [17,19], as well as vaccine
hesitancy [20–24]. Indeed, concern over vaccine side effects was found to be the most
common reason for refusing an updated COVID-19 vaccine [24]. The 2019nCoV-406 study
surveyed participants in the US and Canada who were receiving a COVID-19 vaccine to
compare how reactogenicity impacted work and other daily activities [17]. Findings sug-
gest that in the 6 days following vaccination, recipients of the protein-based NVX-CoV2373
vaccine had lower unadjusted reactogenicity rates and had trended toward less overall
impairment relative to recipients of mRNA vaccines (BNT162b2 and mRNA-1273). We also
observed that over 90% of the most frequently occurring solicited reactogenicity events
were reported within the first 2 days after vaccination. Here, we present an additional
analysis of the 2019nCoV-406 study, including adjustment for potential confounding, to
more closely examine reactogenicity within 2 days of receiving an authorized/approved
COVID-19 vaccine in previously vaccinated participants.

2. Materials and Methods
2.1. Study Design and Participants

The prospective, noninterventional, observational 2019nCoV-406 study investigated
the impact of common reactogenicity events from the COVID-19 vaccine on absenteeism,
presenteeism, and work productivity loss [17]. Briefly, the study enrolled working adults aged
18 to <65 years in the US and Canada who voluntarily received an authorized/approved
primary series or booster dose of a COVID-19 vaccine. As this was an observational study,
participants selected the COVID-19 vaccine type they wanted to receive. A booster dose
was defined as any COVID-19 dose received after the completion of a primary COVID-19
vaccination series, regardless of the prior vaccine type used or prior COVID-19 disease
status. Booster vaccinations included NVX-CoV2373 (5 µg recombinant spike protein co-
formulated with 50 µg of Matrix-M adjuvant) or an mRNA vaccine (BTN162b2 (30 µg) and
mRNA-1273 (50 µg)). Participants completed baseline/screening questionnaires on the day
of their vaccine (day 0) and a daily diary for the following 6 days that included a Vaccine
Symptoms Diary. Further details on participant inclusion criteria and study methods are
available in the prior publication [17]. Written informed consent was provided by each
participant prior to the receipt of their requested vaccine dose and survey completion.

2.2. Objectives

The descriptive/comparative goal of this post hoc analysis was to determine the
difference in local or systemic reactogenicity events occurring within the first 2 days after
the receipt of an NVX-CoV2373 vaccine versus an mRNA COVID-19 vaccine, administered
after completion of any primary vaccination series.

2.3. Assessments

The Vaccine Symptoms Diary measured 11 solicited, participant-reported local/systemic
symptoms over a 24-h recall period. Solicited systemic reactogenicity symptoms were
fever, fatigue, malaise, muscle pain, joint pain, nausea/vomiting, and headache. Solicited
local reactogenicity symptoms included pain, tenderness, swelling, and redness at the
injection site. All symptoms were recorded using a 0-to-3 response scale based on the worst
level of reactogenicity severity experienced, with responses categorized as 0 (no symptom
present), 1 (mild/no interference with activity), 2 (moderate/interferes with activity), and
3 (severe/significant interference with activity). A participant was considered to have
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experienced a reactogenicity symptom if they reported a severity of at least grade 1. This
analysis used data from the 2 days immediately following vaccination.

2.4. Statistics

Analyses of reactogenicity in the 2 days following vaccination were completed in the
booster dose population, which consisted of participants who received any booster dose of
an approved/authorized COVID-19 vaccine, regardless of which vaccine type was used
for prior doses or if they had previously had COVID-19. Due to low numbers receiving
other vaccine types, only data related to NVX-CoV2373 or the mRNA vaccines (BNT162b2
and mRNA-1273) were included in this analysis. Estimation of the sample size required to
power the primary objectives in the main study was described previously [17].

Results are presented by vaccine groups composed of participants who received
NVX-CoV2373 and participants who received BNT162b2 or mRNA-1273, referred to as the
mRNA vaccine group. Findings are also presented in subgroups for the different mRNA
vaccines (BNT162b2 or mRNA-1273) and country (US or Canada).

Analyses are presented separately for systemic and local reactogenicity. The pro-
portions of participants with any systemic/local reactogenicity and with individual sys-
temic/local reactogenicity events, mean numbers of systemic/local events, and the pro-
portion of participants with ≥3 systemic events are presented as comparative analyses.
Comparative analyses were adjusted to address potential confounding using the inverse
probability of treatment weighting (IPTW). As described previously [17], each participant
was assigned a propensity score based on a select group of demographic and clinical charac-
teristics identified using standardized differences. The present analysis used the following
covariates in the IPTW model: country (US vs. Canada), prior COVID-19 diagnosis (yes vs.
no), race (Asian, White), job category (professional), work at home (yes, no, or prefer not to
answer), gender identity (male, female), and scheduled to work in the next 24 h (yes vs.
no). The comparative analyses were weighted using the stabilized inverse probability of
treatment weights. Due to the sample size limitation, the event severity and all subgroup
analyses were analyzed descriptively. All results use the overall participant booster sample.
Results were not adjusted for multiple comparisons.

3. Results
3.1. Participants

The 2019nCoV-406 study was conducted between July 2022 and March 2023. The
booster population included 1130 participants, 303 of whom received NVX-CoV2373 and
827 who received an mRNA vaccine during the study period. Baseline demographics
and clinical characteristics were generally balanced between vaccine groups, as reported
previously [17]; however, some differences between the NVX-CoV2373 and mRNA vaccine
groups were observed related to ethnicity (Table 1). A higher proportion of Hispanic, Latin
American, or Latinx (50.8%) and White (50.2%) participants received NVX-CoV2373 versus
an mRNA vaccine (25.0% and 33.6%, respectively). By contrast, more Asian (22.9%) and
Native Hawaiian or Pacific Islander (9.1%) participants received an mRNA vaccine versus
NVX-CoV2373 (13.2% and 2.0%, respectively). Medical conditions that put participants at
high risk for severe COVID-19 were relatively low in both groups (NVX-CoV2373, 6.3%;
mRNA, 5.4%). Of those participants who received NVX-CoV2373, more did so as a first
(60.7%) versus second (39.3%) dose after completion of the primary series. Alternatively, of
those who received an mRNA vaccine, more received this as a second (62.6%) versus first
(37.4%) booster dose.

Of the 1130 participants in the booster population, 631 participants (NVX-CoV2373,
n = 205; mRNA, n = 426) were from the US and 499 (NVX-CoV2373, n = 98; mRNA, n = 401)
were from Canada (Table 1). The baseline demographics and characteristics of participants
from the US and Canada were generally similar to those observed in the overall booster
population. Most participants with a Hispanic, Latin American, or Latinx ethnicity came
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from the US, and most participants with an Asian or Native Hawaiian or Pacific Islander
ethnicity came from Canada.

Table 1. Baseline demographics and clinical characteristics of study participants by region.

Booster
Population [17] US Canada

Parameter
NVX-

CoV2373
(n = 303)

mRNA
Vaccine a

(n = 827)

NVX-
CoV2373
(n = 205)

mRNA
Vaccine a

(n = 426)

NVX-
CoV2373
(n = 98)

mRNA
Vaccine a

(n = 401)
Age, mean (SD) years 38.9 (11.8) 40.1 (13.0) 39.4 (12.0) 42.6 (13.4) 37.9 (11.2) 37.5 (12.0)
Gender identity, n (%)

Female 156 (51.5) 469 (56.7) 109 (53.2) 243 (57.0) 47 (48.0) 226 (56.4)
Male 142 (46.9) 355 (42.9) 95 (46.3) 182 (42.7) 47 (48.0) 173 (43.1)
Genderfluid 1 (0.3) 0 0 0 1 (1.0) 0
Nonbinary 2 (0.7) 3 (0.4) 0 1 (0.2) 2 (2.0) 2 (0.5)
Prefer not to answer 2 (0.7) 0 1 (0.5) 0 1 (1.0) 0

Race/ethnicity b, n (%)
African American or Black 33 (10.9) 77 (9.3) 27 (13.2) 67 (15.7) 6 (6.1) 10 (2.5)
Asian c 40 (13.2) 189 (22.9) 8 (3.9) 21 (4.9) 32 (32.7) 168 (41.9)
Hispanic, Latin American, or Latinx 154 (50.8) 207 (25.0) 145 (70.7) 197 (46.2) 9 (9.2) 10 (2.5)
Middle Eastern or North African d 5 (1.7) 21 (2.5) 2 (1.0) 2 (0.5) 3 (3.1) 19 (4.7)
Native Hawaiian or Pacific Islander e 6 (2.0) 75 (9.1) 2 (1.0) 0 4 (4.1) 75 (18.7)
White 152 (50.2) 278 (33.6) 106 (51.7) 157 (36.9) 46 (46.9) 121 (30.2)
Other f 11 (3.6) 22 (2.7) 6 (2.9) 9 (2.1) 5 (5.1) 13 (3.2)

Prior COVID-19 diagnosis, n (%) 119 (39.3) 433 (52.4) 67 (32.7) 239 (56.1) 52 (53.1) 194 (48.4)
Medical condition that puts participant at
high risk for severe COVID-19 b, n (%)

Diabetes 6 (31.6) 21 (46.7) 2 (1.0) 15 (3.5) 4 (4.1) 6 (1.5)
Hypertension 7 (36.8) 13 (28.9) 5 (2.4) 10 (2.3) 2 (2.0) 3 (7.5)
Heart disease 2 (10.5) 8 (17.8) 1 (6.7) 8 (1.9) 1 (1.0) 0
Respiratory conditions 5 (26.3) 11 (24.4) 4 (2.0) 7 (1.6) 1 (1.0) 4 (1.0)
Other 5 (26.3) 13 (28.9) 4 (2.0) 10 (2.3) 1 (1.0) 3 (0.7)

Booster dose, n (%)
First 184 (60.7) 309 (37.4) 167 (81.5) 266 (62.4) 17 (17.3) 43 (10.7)
Second or later 119 (39.3) 518 (62.6) 38 (18.5) 160 (37.6) 81 (82.7) 358 (89.3)

mRNA vaccine type, n (%)
Monovalent - 652 (78.8) - 401 (94.1) - 251 (62.6)
Bivalent - 175 (21.2) - 25 (5.9) - 150 (37.4)

Baseline demographics and clinical characteristics for the booster population have been published previously [17].
SD = standard deviation. a Individuals received either BNT162b2 or mRNA-1273. b The categories for these
variables were not mutually exclusive (participants could have listed more than one). c Includes participants who
identified as Chinese, South Asian (e.g., East Indian, Pakistani, or Sri Lankan), Southeast Asian (e.g., Vietnamese,
Cambodian, Laotian, or Thai), Korean, or Japanese. d Includes participants who identified as Middle Eastern,
North African, Arab, or West Asian (e.g., Iranian or Afghan). e Includes participants who identified as Native
Hawaiian, Pacific Islander, or Filipino. f Race/ethnicity categories with fewer than 20 responses are captured in
the “other” category and include: Alaska Native, American Indian, or Native American participants (total n = 6);
race or ethnicity not listed (n = 16); and prefer not to answer (n = 11).

3.2. Systemic Reactogenicity

Within the first 2 days after vaccination, solicited systemic reactogenicity events were
reported in 56.4% of participants who received NVX-CoV2373 and 84.4% of participants
who received an mRNA vaccine (BNT162b2: 84.5%; mRNA-1273: 84.3%). After IPTW ad-
justment, 60.5% of participants who received the NVX-CoV2373 reported solicited systemic
reactogenicity events compared with 83.8% of participants who received an mRNA vaccine
(Figure 1). Muscle pain (NVX-CoV2373: 41.6%; mRNA vaccine: 72.3%), fatigue (47.8% and
66.5%, respectively), and malaise (34.5% and 57.7%, respectively) were the most common
systemic events in each vaccine group.
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Figure 1. Rates of overall and individual solicited systemic reactogenicity events within 2 days of
booster vaccination (IPTW adjusted estimates). Results are presented for the booster population. CI,
confidence interval; IPTW, inverse probability of treatment weighting.

Participants who received NVX-CoV2373 reported a mean number (SD) of 1.8 (2.0)
systemic events, whereas those who received an mRNA vaccine reported a mean of 3.2 (2.1)
systemic events (Table 2). Adjusting for confounding by IPTW led to similar results,
with mean numbers of events (95% CI) of 1.8 (1.6–2.0) for the NVX-CoV2373 group and
3.2 (3.0–3.4) for the mRNA vaccine group (Figure 2). Markedly fewer participants who re-
ceived NVX-CoV2373 reported three or more systemic reactogenicity events than those who
received an mRNA vaccine (adjusted values (95% CI): NVX-CoV2373, 33.9% (28.7–39.1%);
mRNA vaccine, 61.4% (58.1–64.8%)).

Table 2. Descriptive analysis of systemic reactogenicity events in the overall population and by
mRNA vaccine subgroup (unadjusted).

NVX-CoV2373
(n = 303)

mRNA Vaccine
(n = 827)

mRNA Vaccine Subgroup

BNT162b2
(n = 502)

mRNA-1273
(n = 325)

Median (range) 1 (0–7) 3 (0–7) 3 (0–7) 4 (0–7)
Number of events, n (%)

No systemic reactogenicity events 132 (43.6) 129 (15.6) 78 (15.5) 51 (15.7)
1 41 (13.5) 91 (11.0) 62 (12.4) 29 (8.9)
2 34 (11.2) 98 (11.9) 73 (14.5) 25 (7.7)
3 26 (8.6) 108 (13.1) 69 (13.7) 39 (12.0)
4 26 (8.6) 140 (16.9) 81 (16.1) 59 (18.2)
5 26 (8.6) 128 (15.5) 72 (14.3) 56 (17.2)
6 11 (3.6) 89 (10.8) 48 (9.6) 41 (12.6)
7 7 (2.3) 44 (5.3) 19 (3.8) 25 (7.7)

Severity, n (%)
No reactogenicity symptoms reported 132 (43.6) 129 (15.6) 78 (15.5) 51 (15.7)
Mild/no interference with activities 87 (28.7) 290 (35.1) 184 (36.7) 106 (32.6)
Moderate/interfered with activities 62 (20.5) 288 (34.8) 177 (35.3) 111 (34.2)
Severe/significant interference with activities 22 (7.3) 120 (14.5) 63 (12.5) 57 (17.5)

Table shows descriptive data summarizing systemic reactogenicity events reported within 2 days of receipt of a
booster vaccination in the booster population. All values are unadjusted.
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Figure 2. Summary of solicited systemic reactogenicity events within 2 days of booster vaccination
(IPTW adjusted estimates). Booster population. CI, confidence interval; IPTW, inverse probability of
treatment weighting.

With respect to the event severity, a lower proportion (unadjusted) of participants who
received NVX-CoV2373 reported a moderate or severe/significant systemic event within
2 days of vaccination compared with participants who received an mRNA vaccine (27.7%
(84/303) vs. 49.3% (408/827)). Mild events were also reported in lower proportions of
participants who received NVX-CoV2373 (28.7%) compared with those who received an
mRNA vaccine (35.1%).

The mean (SD) number of systemic events was similar whether participants received
BNT162b2 (3.0 (2.1)) or mRNA-1273 (3.5 (2.2)). Similarly, the proportion of participants
reporting any systemic event was 84.5% (424/502) and 84.3% (274/325), respectively. How-
ever, a higher proportion of participants receiving mRNA-1273 reported three or more
systemic reactogenicity events (unadjusted; 67.7% (220/325)) compared with BNT162b2
(57.6% (289/502)). The proportion of participants reporting moderate-to-severe systemic
events was 51.7% (168/325) and 47.8% (240/502) with mRNA-1273 and BNT162b2, respec-
tively (Table 2).

When assessed by country, unadjusted proportions of systemic reactogenicity events
in the US were lower in participants who received NVX-CoV2373 (48.5%) compared with
participants who received an mRNA vaccine (79.1%) (Table 3). Corresponding proportions
tended to be higher for both vaccine types in Canadian participants (NVX-CoV2373: 72.5%;
mRNA: 90.0%). Regardless of country, participants who received NVX-CoV2373 reported
fewer systemic reactogenicity events (mean (SD): US, 1.6 (2.1); Canada, 2.1 (2.0)) than those
who received an mRNA vaccine (mean (SD): US, 3.1 (2.3); Canada, 3.3 (1.9)). Similarly,
regardless of country, fewer participants who received NVX-CoV2373 reported three or
more events (US: 29.8% (61/205); Canada: 35.7% (35/98)) compared with those who
received an mRNA vaccine (US: 58.2% (248/426); Canada: 64.8% (260/401)), and fewer
participants who received NVXCoV2373 reported moderate-to-severe events (US: 22.0%
(45/205)); Canada: 39.8% (39/98)) compared with those who received an mRNA vaccine
(US: 45.5% (194/426); Canada: 53.4% (214/401)).
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Table 3. Descriptive analysis of systemic reactogenicity events by country (unadjusted).

US Canada

NVX-CoV2373
(n = 205)

mRNA Vaccine
(n = 426)

NVX-CoV2373
(n = 98)

mRNA Vaccine
(n = 401)

Mean (SD) 1.6 (2.1) 3.1 (2.3) 2.1 (2.0) 3.3 (1.9)
Median (range) 0 (0–7) 3 (0–7) 2 (0–7) 4 (0–7)
Any systemic event, n (%) 100 (48.5) 337 (79.1) 71 (72.5) 361 (90.0)
Number of events, n (%)

No systemic reactogenicity events 105 (51.2) 89 (20.9) 27 (27.6) 40 (10.0)
1 23 (11.2) 41 (9.6) 18 (18.4) 50 (12.5)
2 16 (7.8) 48 (11.3) 18 (13.4) 50 (12.5)
3 18 (8.8) 52 (12.2) 8 (8.2) 56 (14.0)
4 12 (5.9) 57 (13.4) 14 (14.3) 83 (20.7)
5 20 (9.8) 63 (14.8) 6 (6.1) 65 (16.2)
6 6 (2.9) 45 (10.6) 5 (5.1) 44 (11.0)
7 5 (2.4) 31 (7.3) 2 (2.0) 12 (3.2)

Severity, n (%)
No reactogenicity symptoms reported 105 (51.2) 89 (20.9) 27 (27.6) 40 (10.0)
Mild/no interference with activities 55 (26.8) 143 (33.6) 32 (32.7) 147 (36.7)
Moderate/interfered with activities 31 (15.1) 139 (32.5) 31 (31.6) 149 (37.2)
Severe/significant interference with activities 14 (6.8) 55 (12.9) 8 (8.2) 65 (16.2)

Table shows descriptive data summarizing systemic reactogenicity events reported within 2 days of receipt of a
booster vaccination in the booster population. All values are unadjusted.

3.3. Local Reactogenicity

Similar to systemic reactogenicity, a lower proportion of participants who received
NVX-CoV2373 (68.3%) experienced at least one solicited local reactogenicity event, com-
pared with those who received an mRNA vaccine (91.9%; BNT162b2, 92.6%; mRNA-1273,
90.8%). After IPTW adjustment, local reactogenicity events were estimated to be reported
in 73.7% and 91.7% of participants who received a booster dose of NVX-CoV2373 and
mRNA vaccine, respectively (Figure 3). This trend in differences continued, with the
overall frequency of each individual event occurring in a higher proportion of partici-
pants in the mRNA vaccine versus NVX-CoV2373 group. For both the NVX-CoV2373
and mRNA vaccine groups, the most common solicited local events were pain (61.7% and
84.8%, respectively) and tenderness (65.4% and 87.9%, respectively) at the injection site.

The mean number (SD) of reported local reactogenicity events per individual was
1.5 (1.3) for participants who received NVX-CoV2373 and 2.4 (1.1) for those who received
an mRNA vaccine. Mean (95% CI) adjusted numbers were 1.5 (1.3–1.6) and 2.4 (2.3–2.5),
respectively. Compared with the NVX-CoV2373 group (21.1%), the proportion (unadjusted)
of participants reporting moderate or severe/significant local reactogenicity events was
2.5-fold higher for participants in the mRNA vaccine group (52.0%) (Table 4).

Reporting of local events was generally similar whether participants received BNT162b2
or mRNA-1273 (Table 4). The proportion (unadjusted) of participants reporting any local
event was 92.6% (465/502) for BNT162b2 and 90.8% (295/325) for mRNA-1273. The mean
number (SD) of local events reported was similar between subgroups (2.3 (1.0) and 2.6 (1.2),
respectively); however, the proportion of participants who reported moderate or severe
local events was higher in recipients of mRNA-1273 (57.5% (187/325)) than recipients of
BNT162b2 (48.4% (243/502)).

In both the US and Canada, proportions (unadjusted) of local reactogenicity events
were lower in participants who received NVX-CoV2373 compared with participants who re-
ceived an mRNA vaccine, with events reported at a lower frequency in US versus Canadian
participants (US: NVX-CoV2373, 62.4% vs. mRNA, 88.3%; Canada: NVX-CoV2373, 80.6%
vs. mRNA, 95.8%) (Table 5). The mean number of local reactogenicity events reported in
the US and Canada tended to follow the same pattern as the overall booster population,
with fewer events reported for those who received NVX-CoV2373 versus an mRNA vaccine.
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Similar to the overall population, regardless of country, lower proportions of participants
who received NVX-CoV2373 reported moderate-to-severe local reactogenicity events (US:
20.0% (41/205); Canada: 23.5% (23/98)) compared with those who received an mRNA
vaccine (US: 46.0% (196/426); Canada: 58.4% (234/401)).
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Figure 3. Overall and individual solicited local reactogenicity events within 2 days of booster
vaccination (IPTW adjusted estimates). Booster population. CI, confidence interval; IPTW, inverse
probability of treatment weighting.

Table 4. Descriptive analysis of local reactogenicity events in the overall population and by mRNA
vaccine subgroup (unadjusted).

NVX-CoV2373
(n = 303)

mRNA Vaccine
(n = 827)

mRNA Vaccine Subgroup

BNT162b2
(n = 502)

mRNA-1273
(n = 325)

Median (range) 2 (0–4) 2 (0–4) 2 (0–4) 3 (0–4)
Number of events, n (%)

No systemic reactogenicity events 96 (31.7) 67 (8.1) 37 (7.4) 30 (9.2)
1 51 (16.8) 57 (6.9) 38 (7.6) 19 (5.8)
2 98 (32.3) 328 (39.7) 227 (45.2) 101 (31.1)
3 33 (10.9) 216 (26.1) 130 (25.9) 86 (26.5)
4 25 (8.3) 159 (19.2) 70 (13.9) 89 (27.4)

Severity, n (%)
No reactogenicity symptoms reported 96 (31.7) 67 (8.1) 37 (7.4) 30 (9.2)
Mild/no interference with activities 143 (47.2) 330 (39.9) 222 (44.2) 108 (33.2)
Moderate/interfered with activities 57 (18.8) 338 (40.9) 200 (39.8) 138 (42.5)
Severe/significant interference with activities 7 (2.3) 92 (11.1) 43 (8.6) 49 (15.1)

Table shows descriptive data summarizing local reactogenicity events reported within 2 days of receipt of a
booster vaccination in the booster population. All values are unadjusted.
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Table 5. Descriptive analysis of local reactogenicity events by country (unadjusted).

US Canada

NVX-CoV2373
(n = 205)

mRNA Vaccine
(n = 426)

NVX-CoV2373
(n = 98)

mRNA Vaccine
(n = 401)

Mean (SD) 1.3 (1.3) 2.4 (1.3) 1.7 (1.2) 2.4 (1.0)
Median (range) 1 (0–4) 2 (0–4) 2 (0–4) 2 (0–4)
Any local event, n (%) 128 (62.4) 376 (88.3) 79 (80.6) 384 (95.8)
Number of events, n (%)

No local reactogenicity events 77 (37.6) 50 (11.7) 19 (19.4) 17 (4.2)
1 33 (16.1) 36 (8.5) 18 (18.4) 21 (5.2)
2 59 (28.8) 133 (31.2) 39 (39.8) 195 (48.6)
3 20 (9.8) 108 (25.4) 12 (13.3) 108 (26.9)
4 16 (7.8) 99 (23.2) 9 (9.2) 60 (15.0)

Severity, n (%)
No reactogenicity symptoms reported 77 (37.6) 50 (11.7) 19 (19.4) 17 (4.2)
Mild/no interference with activities 87 (42.4) 180 (42.3) 56 (57.1) 150 (37.4)
Moderate/interfered with activities 37 (18.1) 147 (34.5) 20 (20.4) 191 (47.6)
Severe/significant interferences with activities 4 (2.0) 49 (11.5) 3 (3.1) 43 (10.7)

Table shows descriptive data summarizing local reactogenicity events reported within 2 days of receipt of a
booster vaccination in the booster population. All values are unadjusted.

4. Discussion

In this post hoc analysis of the 2019nCoV-406 study, participants who received NVX-
CoV2373 after completing a primary vaccination series reported fewer and less-severe
local and systemic reactogenicity symptoms in the 2 days following vaccination compared
with those who received an mRNA vaccine after completing a primary vaccination series.
These real-world data provide a better understanding of the reactogenicity events associated
with the two COVID-19 vaccine platforms (protein-based and mRNA) received in the US and
Canada. In the 2 days following vaccination, local and systemic reactogenicity events were more
commonly reported in participants who received an mRNA vaccine than in those who received
NVX-CoV2373. The proportions of participants reporting the most common local (injection site
pain and tenderness) and systemic (muscle pain, fatigue, and malaise) reactogenicity events
were higher among those who received an mRNA vaccine (>84% and >57%, respectively) than
among those who received NVX-CoV2373 (up to 65% and up to 48%, respectively). In addition,
mRNA vaccine recipients were more likely to report experiencing three or more systemic events
or events with moderate-to-severe severity than participants who received NVX-CoV2373.
These findings are consistent regardless of the mRNA brand compared.

These data build on overall findings from the 2019nCoV-406 study [17] by focusing
on the 2 days immediately following the receipt of a booster vaccination and adjusting
for potential confounding using IPTW. As noted previously, this timing is of interest
because over 90% of the most frequently occurring solicited reactogenicity events in the
2019nCoV-406 study were reported within the first 2 days. Similarly, multiple studies
have shown that systemic and local reactogenicity events are short-lived, with mean or
median durations of 2 days or less for the most frequently reported solicited reactogenicity
events [7–9,11]. The primary analysis from the 2019nCoV-406 study suggested a trend
toward less overall work impairment with NVX-CoV2373 compared with the mRNA
vaccines [17]. In addition, greater proportions of participants who received an mRNA vaccine
reported local and systemic reactogenicity events compared with NVX-CoV2373. This post
hoc analysis showed consistent findings for the 2 days after the booster vaccination, including
when the potential confounding related to differences in baseline and clinical characteristics
being accounted for using IPTW.

Multiple studies have found a greater reactogenicity of mRNA vaccines relative to
other COVID-19 vaccine platforms, including adjuvanted, protein-based vaccines such as
NVX-CoV2373 [12,16,25–30]. While there are limitations to direct comparisons between differ-
ent studies, it is notable how closely these findings from the 2019nCoV-406 study mirror obser-
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vations from the Oxford COV-BOOST trial and a National Institute for Allergy and Infectious
Diseases and National Institutes of Health-funded booster study [26,27]. The results from this
analysis of 2019nCoV-406 expand on previous reports [16,28,30] by focusing on the effects of
the vaccine doses administered after the completion of the primary COVID-19 vaccination
series. Additional COVID-19 vaccine dosing, whether as the second dose of the primary
series or as subsequent doses, can result in greater reactogenicity compared with the first
injection [6,9,10], especially when receiving a heterologous booster [19,25,31]. Although the
studies investigating reactogenicity in homologous and heterologous booster doses were
generally not powered to make comparisons between vaccine types, altogether findings
from 2019nCoV-406 and other studies suggest that NVX-CoV2373, when administered as a
heterologous booster, has less reactogenicity than mRNA vaccines when administered as a
homologous or heterologous booster dose [12,25,26,30]. This is especially relevant as most
people in the US and Canada have received a primary series of an mRNA vaccine. Concern
about side effects is a primary reason for COVID-19 vaccine hesitancy [22–24]. Accordingly,
COVID-19 vaccines with lower rates of reactogenicity, which is suggested of heterologous
use of NVX-CoV2373 by the present analysis and several descriptive studies [12,25,26,30],
have the potential to decrease vaccine hesitancy. This may be especially useful given the
continued evolution of SARS-CoV-2 and recommendations from public health authorities
for annual updates to the COVID-19 vaccine strain composition [32–35], suggesting the
potential need for a seasonal COVID-19 vaccination, similar to influenza vaccination.

Comparison between the two mRNA vaccines showed that BNT162b2 (30 µg) tended
to elicit fewer and slightly less severe systemic and local reactogenicity events than mRNA-
1273 (50 µg). If making cross-study comparisons, it is important to note the vaccine doses
investigated in the studies [12,25–28]. In particular, participants in COV-BOOST and the
MixNMatch Study (DMID 21-0012) received a higher dose of mRNA-1273 (100 µg) than
is currently approved [26,27]. However, mRNA-1273 was administered at the approved
50 µg dose [2] in the 2019nCoV-406 study, and the rates of the reactogenicity events ob-
served with RNA-1273 were still higher than those observed with BNT162b2.

Despite the widespread use of mRNA and protein-based COVID-19 vaccines, the
mechanisms that induce the immune responses associated with reactogenicity and im-
munogenicity remain largely unknown. However, studies using animal models suggest
that the mRNA and protein-based vaccines induce the innate immune system through dif-
ferent pathways, driven by unique platform designs and mechanisms [36–39]. The mRNA
COVID-19 vaccine components elicit intrinsic adjuvant-like effects due to the immunostim-
ulatory activation of innate sensors by lipid nanoparticle (LNP) carriers and foreign nucleic
acids, as well as by direct LNP host-cell cytotoxicity [36]. By contrast, the protein-based
COVID-19 vaccine relies on the saponin-based Matrix-M adjuvant to enhance the immuno-
genicity of protein antigens. Following Matrix-M–adjuvanted vaccine administration, both
saponins and antigen are undetectable within 24 h post-injection (hpi) having been trans-
ported to the draining lymph nodes, thereby seeing local cytokine expression declining
sharply by 48 h [39]. Though some animal studies have found LNP-mRNA persists at the
injection site beyond 24 hpi, head-to-head comparisons of mRNA and protein–vaccine
trafficking kinetics, clearance, and proinflammatory cytokine expression are needed. Differ-
ences in reactogenicity could also be due to the high concentrations of mRNA (30–50 µg),
which utilizes host-cell machinery to translate variable antigen quantities compared to the
precise 5 µg of the antigen contained in the protein vaccine.

Recent studies have highlighted the significant protective properties of both mRNA
and Novavax COVID-19 vaccines. The mRNA vaccines, such as those developed by
Pfizer–BioNTech and Moderna, have demonstrated the high efficacy rates of approximately
94–95% in preventing symptomatic COVID-19 in clinical trials, with robust protection
against severe disease and hospitalization [6,9]. Additionally, the mRNA vaccines have
shown effectiveness in reducing transmission rates, contributing to community-level im-
munity [40,41]. Similarly, the Novavax vaccine, which utilizes a recombinant nanopar-
ticle technology combined with the Matrix-M adjuvant, has shown an efficacy rate of
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approximately 90% in phase 3 clinical trials [7,8] and 100% against SARS-CoV-2–related
hospitalization [42]. The Novavax vaccine also offers strong protection against SARS-CoV-2
variants of concern such as the Alpha and Beta variants, which underscores its potential
as a critical tool in the ongoing global vaccination effort [43]. Together, these vaccines
represent powerful options in the fight against COVID-19, offering high levels of protection.
Limitations to the 2019nCoV-406 study have been previously reported [17] and are inherent
to all noninterventional, real-world investigations. For example, study participants may
not be representative of all populations receiving COVID-19 vaccines. This may be due to
the timing of the study relative to vaccine approval/authorization; the later authorization
for use and the availability of NVX-CoV2373 (winter/early spring 2023) relative to that
of mRNA vaccines (late summer/early fall 2022) may have created a temporal bias. Low
enrollment at some study sites likely led to the concentration of participants with particular
demographics (e.g., race/ethnicity) or with access to a specific type of vaccine. In addi-
tion, while the availability of different vaccine types may have been defined by what was
available at the site, vaccines were selected by the participant, which could also introduce
bias. Real-word studies using patient-reported outcomes are often associated with concerns
regarding the completeness and accuracy of patient reporting. While participants were
instructed to complete the daily questions at the same time every day, it was possible to
access and complete the diaries within an 8-h period.

It is relevant to note that the study was not powered to evaluate reactogenicity and
that the post hoc nature of this analysis limits the conclusions that can be derived from the
results. IPTW adjustments were made for the overall booster dose population; however,
adjusted analyses were not available for data reporting on the severity or for the mRNA
vaccine and country subgroups. Results in the country subgroups were largely similar
to those of the overall population; however, some differences were observed. A higher
proportion of participants in the US (32% (205/630)) selected NVX-CoV2373 compared
with participants in Canada (20% (98/499)); reactogenicity tended to be reported in higher
proportions of Canadian participants, regardless of the vaccine received, and the differences
in reactogenicity reporting between NVX-CoV2373 and mRNA vaccine subgroups tended
to be greater in participants in the US compared with those from Canada. Some of these
findings may be limited by differences in adverse event reporting in the US and Canada;
however, reactogenicity was higher among recipients of mRNA vaccines compared with
NVX-CoV2373 in both countries. Finally, the impact of booster dose number (e.g., first vs.
second booster dose) relative to reactogenicity was not assessed.

The 2019nCoV-406 study provides data from a large, real-world population of partici-
pants receiving an additional dose of COVID-19 vaccine after completion of a primary vac-
cination series. Reactogenicity was captured in the same manner as in the phase 3 studies
of COVID-19 vaccines, thereby strengthening the generalizability of these findings. Im-
portantly, participants were enrolled at the time of their vaccination, with data collected
daily, improving accuracy and limiting recall bias. In addition, this post hoc analysis used
propensity score adjustments (i.e., IPTW) to reduce bias.

5. Conclusions

Considering the lower frequency and intensity of COVID-19 reactogenicity symptoms
observed in this post hoc analysis of the real-world 2019nCoV-406 study, this analysis sup-
ports the use of adjuvanted protein-based NVX-CoV2373 as an immunization option that
has low reactogenicity. The benefits of traditional protein-based platforms are highlighted
by a history of safe and effective use, as well as favorable storage and handling without the
need for the ultra-cold temperatures required of mRNA, not to mention their inherent flexi-
bility and the precise control of antigen concentration. Specifically, Matrix-M–adjuvanted
NVX-CoV2373 has demonstrated consistent efficacy and immunogenicity, as well as evidence
of lower reactogenicity than mRNA COVID-19 vaccine options. Future prospective studies
are needed to confirm the observations reported here and to continue to examine the effects of
age, sex, race/ethnicity, and even comorbidities on COVID-19 vaccine reactogenicity.
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