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Plasma proteomics discovery of mental 
health risk biomarkers in adolescents

Izaque de Sousa Maciel    1,8, Aino-Kaisa Piironen    1,8, Alexey M. Afonin1,8, 
Mariia Ivanova1, Arto Alatalo    1, Kaustubh Kishor Jadhav1, Jordi Julvez2,3,4, 
Maria Foraster3,4,5,6, Irene van Kamp7 & Katja M. Kanninen1 

An estimated 10–20% of adolescents experience mental health conditions, 
and most of them remain underdiagnosed and undertreated. Discovering 
new susceptibility biomarkers is therefore important for identifying 
individuals at high risk of developing mental health problems, and for 
improving early prevention. Here we aimed to discover plasma protein-
based susceptibility biomarkers in children/adolescents aged 11–16 years 
at risk of developing mental health issues. Risk was evaluated on the basis 
of self-reported Strengths and Difficulties Questionnaire (SDQ) scores, 
and plasma proteomic data were obtained for individuals participating in 
the Spanish WALNUTs cohort study by liquid chromatography–tandem 
mass spectrometry. Bioinformatic analyses were performed to identify 
the biological processes and pathways in which the identified biomarker 
candidates are involved; 58 proteins were significantly associated with the 
SDQ score. The most prominent enriched pathways related to these proteins 
included immune responses, blood coagulation, neurogenesis and neuronal 
degeneration. This exploratory study revealed several alterations of plasma 
proteins associated with the SDQ score in adolescents, which opens a 
new avenue to develop novel susceptibility biomarkers to improve early 
identification of individuals at risk of mental health problems.

Adolescence is a period of life of profound changes in the biologi-
cal, psychosocial, cognitive and emotional domains1–3. The dynamic 
brain development during youth opens a critical window for cognitive 
improvement, but also the onset and development of mental disor-
ders4,5. Several mental disorders, such as attention deficit hyperactivity 
disorder, phobias, obsessive compulsive disorder, eating disorder, 
substance use, mood and social anxiety disorder, begin before the 
individual reaches adulthood, with a peak age of onset of 14 years5–7. 
Mental disorders negatively impact adolescent development, leading 
to morbidity, mortality and dysfunction in later life5,8. Therefore, iden-
tifying adolescents with a high risk of developing mental health issues 

and improving early diagnostics could improve the clinical outcomes 
and decrease the socio-economic impact.

Globally the prevalence of mental health conditions in adolescents 
is estimated to be between 10–20%, and most cases remain underdiag-
nosed and undertreated9,10. The social stigma of mental disorders, the 
adolescent and parent perception of mental health care needs, and the 
lack of mental health resources are some factors that contribute to the 
number of adolescents without proper diagnosis and treatment11,12.  
Furthermore, misdiagnosis or overdiagnosis could expose the ado-
lescent to unnecessary treatment13. Diagnostics of mental disorders 
are based on the International Classification of Diseases (ICD) and the 
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Plasma samples and behavioral outcome
The peripheral blood plasma samples were obtained and analyzed 
from a subsample of 91 adolescents, aged 11–16 years, of the WALNUTs 
regional Spanish study (Table 1). The samples were collected in 2016 at 
approximately the same time that the participants filled out the SDQ. 
This baseline subsample without any dietary intervention was selected 
on the basis of the availability of blood samples and filled SDQ ques-
tionnaires, as well as the total scores of the SDQ questionnaire. Based 
on the self-reported SDQ score, the plasma samples were categorized 
into lower (SDQ = 0–14) and raised (SDQ = 15–25) groups35. The plasma 
samples were stored undisturbed at −80 °C until they were thawed in 
2021 for protein depletion and subsequent proteomic analysis. The 
studies were reviewed and approved by the CEIC Parc Salut Mar Clini-
cal Research Ethics Committee (approval nos. 2015/6026, WALNUTs; 
2020/9688, Equal-Life). Written informed consent to participate in 
the original WALNUTs study was provided by the participants’ legal 
guardian/next of kin.

Plasma samples were pre-processed and analyzed using liquid 
chromatography electrospray ionization tandem mass spectrometry, 
which was performed at the Turku Proteomics Facility and supported 
by Biocenter Finland. The linear associations between the SDQ score 
and the protein abundances were investigated using linear modeling 
with DeqMS36. To characterize the biological processes and pathways 
related to the identified proteins, significantly differently abundant 
proteins (adjusted P-value ≤ 0.05) associated with the SDQ score 
were used in further bioinformatic data analyses. See the Methods for  
more details.

Results
Protein identification
Using mass spectrometry-based proteomics we successfully identified 
1,485 proteins in the WALNUTs plasma samples (N = 91; mean of 1,228 
proteins per sample; standard error = 117). The full list of the proteins 
is presented in the Supplementary Information. Out of these, 77 were 
identified as contaminants, and were removed. After that, 983 proteins  
were detected in at least 80% of the samples, and therefore these  
proteins were used for subsequent analysis.

The sex and age variables were added to the linear model to 
correct for the possible effects. In the analysis, 67 proteins a had 
linear relationship with the SDQ score, out which 48 were positively  
correlated with the SDQ score, and 19 were negatively correlated 
(Fig. 1b). The proteins associated with the SDQ score are presented  
in Table 2.

All the significantly altered proteins were used to create a heatmap 
(Fig. 1b) that shows the protein abundances (z-scores) in relation to 
the SDQ score.

Enriched pathways and biological processes
Of the highly abundant proteins that were depleted from the plasma 
samples before the mass spectrometry analysis, nine were found in 
the data; these were considered as a possible source of bias and were 

Diagnostic and Statistical Manual (DSM) classifications provided by the 
World Health Organization (WHO) and the American Psychiatric Asso-
ciation, respectively14. Clinical interviews and validated questionnaires 
used for symptom assessment (for example, the Beck Depression Inven-
tory15) have a major role in mental health diagnostics. The complexity 
of adolescent behavior and the overlap of symptomatology of several 
mental disorders complicate the precise and objective diagnosis of 
diseases in youth. Furthermore, the difficulty in defining normative or 
atypical expected behavioral development in adolescence16, and lack 
of access to professional expertise, contribute to inaccurate judgment 
and precise definition of mental health conditions in adolescents17,18.

The Strengths and Difficulties Questionnaire (SDQ) is a screening 
questionnaire for emotional and behavioral problems in children and 
young people that assesses the impact of difficulties on the child’s life, 
including (1) emotional symptoms, (2) conduct problems, (3) hyper-
activity/inattention, (4) peer relationship problems and (5) prosocial 
behavior19–21. Past validation studies have shown that the total SDQ 
score can be considered as a predictive factor for mental health disor-
ders, as children with high SDQ scores have an increased probability for 
clinical disorders22,23. Differences in the total SDQ score seem to reflect 
the differences in prevalence of mental health disorders, although 
cross-national differences exist22,24. Thus, developing additional tools 
such as biological measurements for assessing mental health issues 
could improve identification of adolescents at high risk of mental 
health dysfunction, and enhance more precise diagnostics.

Although studying human brain tissue may be the most reveal-
ing method for measuring alterations related to mental disorders, 
it poses several severe limitations, including tissue access25 and high 
cost in the case of neuroimaging25. By contrast, biological fluids such 
as blood or urine are easier to access and are routinely used for clini-
cal diagnostics. Alterations in the gene expression levels, proteins 
abundance and biological activity can serve as internal indicators 
present in biological fluids (biomarkers), of pathogenic processes or 
responses to an external exposome25,26. The blood connects the brain 
and periphery, and changes in plasma components such as proteins 
can reflect alterations in the brain associated with mental disorders 
due to the two-way communication between the central nervous sys-
tem (CNS) and peripheral circulation27,28. Past studies have shown the 
plasma proteomic changes associated with mental disorders29–32. For 
example, significant reductions in glia maturation factor beta and 
brain-derived neurotrophic factor were observed in patients with 
schizophrenia (SCZ) when compared with healthy volunteers29. Thus, 
peripheral blood plasma is a suitable biological fluid for investigating 
molecular alterations that reflect those associated with mental health 
issues, and for providing new understanding on the bidirectional com-
munication between the brain and body27–30.

Limited knowledge exists on whether alterations in plasma pro-
teins could serve as early susceptibility biomarkers to predict the risk 
of mental health issues, leading to proper clinical interventions before 
disease onset, even though alterations in pathways and molecules 
related to hormone signaling, energy metabolism, growth factors, 
inflammation, oxidation/reduction and protein synthesis have been 
commonly associated with psychiatric disorders28. However, studies 
by Mongan et al.33 and English et al.34 suggest that adolescents at high 
risk of psychosis could be identified on the basis of the changes in 
the blood proteome several years before the psychotic experiences 
manifest. The number of studies focusing on discovering new suscep-
tibility or predictive plasma biomarkers for mental health diseases in 
adolescents is so far limited.

This explorative study aims to identify and characterize altera-
tions of plasma proteins in adolescents at high risk of developing 
mental health issues. We identified 67 plasma proteins with abundances 
significantly associated with the SDQ score, offering new insight into 
using proteins as susceptibility biomarkers for early identification of 
adolescents at risk of mental health problems.

Table 1 | Sample characteristics

Group Low Raised

SDQ = 0–14 SDQ = 15–25

Sex Male Female Male Female

SDQ scores 
(mean ± s.d.)

3.50 ± 1.41 3.50 ± 1.47 16.92 ± 2.01 18.00 ± 2.42

Number (n (%)) 24 (57.1) 18 (42.9) 27 (55.1) 22 (44.9)

Age 
(mean ± s.d.)

13.54 ± 1.07 13.53 ± 0.73 13.93 ± 1.03 14.37 ± 1.13

n, number of samples (% of each group); s.d., standard deviation.
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excluded from these analyses, leaving 58 proteins significantly associ-
ated with the SDQ score.

Those proteins were used for a clustering analysis of the differ-
entially abundant proteins identified in our study using the STRING 
database37. The clustering analysis yielded three groups of proteins, as 
shown in Fig. 2a. Cluster 1 contained up- and down-regulated proteins 
involved in neuron growth, synaptic function, glial cell migration and 
cholesterol transport. The second cluster contained only up-regulated 
proteins mostly involved in the complement and coagulation cascades. 
Cluster 3 contained three down-regulated proteins involved in the 
olfactory system and three up-regulated proteins involved in protein 
degradation.

We also performed an analysis of enriched pathways with  
Reactome38, using all of the identified proteins as the gene background. 
Enriched pathways were related to immune system, coagulation,  
complement cascade, and post-translational protein modification  
(Fig. 2b). In total, thirteen pathways were significantly (false discovery 
rate (FDR)-adjusted P-value < 0.05) enriched in the pathway analysis 
(Supplementary Table 1). The signaling pathways analysis in ingenuity 
pathway analysis (IPA) revealed that canonical pathways were associ-
ated with immune responses, coagulation, complement cascade and 
signaling, as in the Reactome analysis (Supplementary Table 2).

Predictive models generation
The relatively large number of samples made it possible to employ 
modern strategies to determine potentially predictive biomarkers for 
the low versus raised SDQ score groups. A novel QLattice algorithm39 
was used to create models containing predictive biomarkers that best 
separate the two groups with low and raised SDQ scores. The Bayesian 
information criterion (BIC) was used to ensure that the resulting models 
generalize well from the training to test set. We performed fivefold  
cross-validation of running logistical regression model with  
QLattice on different partitions of the data keeping the lowest  
BIC-scoring model from each partition. The receiver operator charac
teristic (ROC) curves and area under the ROC curve (AUC) for each  
of the models are presented in Supplementary Fig. 2.

Five diverse models were created using a fivefold cross-validation 
scheme. These models bring similar—albeit complementary—insights, 
as the whole dataset was split into training and validation sets five 
times, and each round contained different sub-samples of the data. 
The five unique models (Table 3) contained eleven proteins in total 
(Supplementary Table 3). Four of the five models contained proteins 
with a previously shown connection to the CNS. The first model con-
tained three such proteins: amyloid beta precursor-like protein 1 
(APLP1) (P51693), calcium/calmodulin dependent protein kinase II beta 
(CAMK2B) (Q13554/Q13555) and Reticulon 4 (RTN4; Q9NQC3), the ROC 
parameters for the models are shown in the Supplementary Fig. 2. Only 
the fifth model contained no proteins, previously connected to brain 
development. The proteins present in the models can be investigated 
further as potential biomarkers.

Discussion
Plasma proteomic biomarker studies in mental health diseases are a 
novel field. Increasing evidence shows alterations in plasma proteins 
associated with different mental disorders such as depression (MDD), 
SCZ, psychotic disorders and bipolar disorders24,25,32. Most altered path-
ways in mental disorders (such as complement cascade and signaling 
by interleukins) seem to be common to the above-mentioned major 
psychiatric disorders32. Here we report plasma protein alterations 
related to immune responses, blood coagulation, complement cascade, 
neuronal degeneration and neurogenesis in adolescents at high risk of 
mental dysfunction, which was evaluated based on the self-reported 
SDQ score. It should be kept in mind that assessing the risk of mental 
health problems in adolescents is associated with ethical issues, which 
should be appropriately considered.

In this study we used the total SDQ score as an indicator of  
mental health dysfunction and predisposition to mental health 
issues in adolescents. Becker and co-workers have shown the predic-
tive value of the self-reported SDQ in clinical diagnostics, especially 
combined with parent and/or teacher versions40. Furthermore, 
the self-reported SDQ was shown to be a reliable and valid method 
for the assessment of behavioral problems in children and adoles-
cents40. Goodman et al. have shown that multi-informant (parents, 
teachers, older children) SDQs in community samples can identify 
children and adolescents with a psychiatric diagnosis with a speci-
ficity of 94.6% and a sensitivity of 63.3%; SDQ scores successfully 
identified over 70% of individuals with conduct, hyperactivity, 
depressive and some anxiety disorders19. The SDQ performs well 
as a screening tool, but it is not intended to be used as a psychiatric 
diagnostic instrument as such41. It is therefore considered a useful 
and valid tool for screening children and adolescents at a high risk 
of mental disorders19,41,42.

This study revealed 58 plasma protein alterations associated with 
the SDQ score in adolescents. The abundances of 39 proteins were 
enhanced in the raised SDQ score group, whereas 19 were reduced. We 
identified altered proteins such as clusterin, vitronectin, complement 
C2 and coagulation factor XI that have also been reported to be altered 
in past blood proteomics studies33,43,44.
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Fig. 1 | Significantly altered proteins identified in mass spectrometry- 
based proteomic analysis. a, Volcano plot of proteins associated with the  
SDQ score; 58 proteins were significantly changed, indicated in blue (adjusted 
P-value < 0.05). The P-values were calculated using DeqMS with SDQ as a  
continuous variable, and adjusted using the Benjamini–Hochberg method.  
b, A heatmap of protein abundances (z-scores) of proteins significantly 
associated with the SDQ score. The upper group represents negatively correlated 
proteins (n = 19), and the lower group positively correlated proteins (n = 48). 
SDQ scores are shown as the gradient at the bottom of the heatmap, green (pink) 
indicates individuals with a low (raised) SDQ score.
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Table 2 | Plasma proteins with abundance changes associated with the SDQ score

Protein ID Gene names Protein names Effect size log2FC Adjusted P-value

P13796 LCP1 Lymphocyte cytosolic protein 1 0.024393435 0.28230175 0.00266891423429772

Q5XPI4 RNF123 Ring finger protein 123 0.030214587 0.407569734 0.00266891423429772

P02763 ORM1 Orosomucoid 1* 0.041472001 0.582318552 0.00266891423429772

P00450 CP Ceruloplasmin 0.021579105 0.242648946 0.00266891423429772

P01833 PIGR Polymeric immunoglobulin receptor −0.051686633 −0.707557707 0.00406569633896016

P35542 SAA4 Serum amyloid A4, constitutive 0.031761716 0.354177466 0.00444900848111389

P08697 SERPINF2 Serpin family F member 2 0.022213284 0.281759883 0.00444900848111389

P05155 SERPING1 Serpin family G member 1 0.019806854 0.24302875 0.00444900848111389

P02675 FGB Fibrinogen β chain* 0.026409456 0.431154772 0.00444900848111389

P02679 FGG Fibrinogen gamma chain* 0.025721779 0.423203306 0.00444900848111389

P01008 SERPINC1 Serpin family C member 1 0.018137241 0.199816818 0.00444900848111389

P25786 PSMA1 Proteasome 20S subunit α1 −0.095693078 −1.302777999 0.00444900848111389

Q9UK55 SERPINA10 Serpin family A member 10 0.023632886 0.301366666 0.00444900848111389

P05154 SERPINA5 Serpin family A member 5 0.027008252 0.324609321 0.00688379748291161

P04180 LCAT Lecithin-cholesterol acyltransferase 0.020279571 0.221513014 0.00688379748291161

P02787 TF Transferrin* 0.024014254 0.335644745 0.00840623855309166

P02671 FGA Fibrinogen α chain* 0.021692839 0.350696404 0.00972440642891591

O95445 APOM Apolipoprotein M 0.022035032 0.246726784 0.01311860384508440

P08571 CD14 CD14 molecule 0.018772876 0.212669508 0.01311860384508440

P43251 BTD Biotinidase 0.022100724 0.267028414 0.01311860384508440

Q15485 FCN2 Ficolin 2 0.037120727 0.44342002 0.01314547997572250

P08603 CFH Complement factor H 0.018284096 0.191087977 0.01561410991073270

P03951 F11 Coagulation factor XI 0.024018263 0.287092562 0.01608758697162620

P06681 C2 Complement C2 0.01678681 0.18562205 0.01826102103619690

P51693 APLP1 Amyloid β precursor-like protein 1 −0.048592355 −0.725496494 0.01826102103619690

P19652 ORM2 Orosomucoid 2* 0.027306639 0.329227308 0.01885805215970600

P01019 AGT Angiotensinogen 0.018588708 0.250511329 0.02185375824202300

P00734 F2 Coagulation factor II, thrombin 0.0178514 0.16799325 0.02216801017152710

P26992 CNTFR Ciliary neurotrophic factor receptor −0.030575485 −0.400276076 0.02216801017152710

A6NE52 KIAA1875 WD repeat domain 97 −0.069097379 −0.878591149 0.02216801017152710

P02768 ALB Albumin* 0.018244928 0.269527276 0.02216801017152710

P11171 EPB41 Erythrocyte membrane protein band 4.1 −0.048815886 −0.659499259 0.02306083695884880

P01042 KNG1 Kininogen 1 0.016314731 0.160500404 0.02306083695884880

P29622 SERPINA4 Serpin family A member 4 0.018413978 0.240780219 0.02306083695884880

Q13554;Q13555 CAMK2B, CAMK2G Calcium/calmodulin-dependent protein 
kinase type II subunit β

0.051385424 0.751103187 0.02306083695884880

P06276 BCHE Butyrylcholinesterase 0.020235784 0.247353801 0.02402185464772990

P62873 P62873 G protein subunit β 1 −0.054612995 −0.688126035 0.02402185464772990

P00751 CFB Complement factor B 0.019090843 0.210533723 0.02402185464772990

P00742 F10 Coagulation factor X 0.017052085 0.1825767 0.02402185464772990

Q58FF3 HSP90B2P Putative endoplasmin-like protein −0.09637649 −1.287683106 0.02668279775737110

P04217 A1BG α1-B glycoprotein* 0.019130571 0.194414326 0.02898562281342810

P05156 CFI Complement factor I 0.018729496 0.217624798 0.02898562281342810

Q9UGM5 FETUB Fetuin B 0.023263795 0.240217283 0.02898562281342810

P02652 APOA2 Apolipoprotein A2 0.020753485 0.191480134 0.02898562281342810

P11166 SLC2A1 Solute carrier family 2 member 1 −0.046363787 −0.577758688 0.02898562281342810

P00736 C1R Complement C1r subcomponent 0.015778503 0.134858762 0.02898562281342810

P08185 SERPINA6 Serpin family A member 6 0.017945936 0.219458651 0.02898562281342810
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Blood coagulation and immune responses, including the com-
plement cascade, were the most enriched pathways altered among 
proteins significantly associated with the SDQ score. Our clustering 
analysis revealed up-regulation of complement and blood coagulation 

cascades. Past studies have also shown associations between early 
changes in complement and coagulation cascades and increased risk of 
psychotic disorders in adolescents33,34,45. Changes in immune responses 
and blood coagulation have also been reported in SCZ, MDD and 

Protein ID Gene names Protein names Effect size log2FC Adjusted P-value

P07477;P07478;Q8NHM4 PRSS1, PRSS3P2, 
PRSS3P2

Serine protease 1 −0.100752815 −1.377624809 0.03115142391195680

Q6IF82 OR4A47 Olfactory receptor family 4 subfamily A 
member 47

−0.093345139 −0.983920911 0.03159089421977260

P04004 VTN Vitronectin 0.015083377 0.135248758 0.03608129999454210

Q8N3T6 TMEM132C Transmembrane protein 132C −0.068568409 −0.868793155 0.03921664831857450

P02647 APOA1 Apolipoprotein A1* 0.017379495 0.156907997 0.03921664831857450

P22792 CPN2 Carboxypeptidase N subunit 2 0.022272689 0.254526745 0.04145715624086360

O95998 IL18BP Interleukin 18 binding protein −0.044789476 −0.588596594 0.04145715624086360

P13611 VCAN Versican −0.039810664 −0.586620961 0.04145715624086360

O95274 LYPD3 LY6/PLAUR domain-containing 3 −0.107072994 −1.564572013 0.04145715624086360

Q9NZP8 C1RL Complement C1r subcomponent-like 0.016939083 0.17007371 0.04145715624086360

P12955 PEPD Peptidase D 0.020336146 0.335635822 0.04145715624086360

P01023 A2M α2-macroglobulin 0.01942573 0.193716524 0.04145715624086360

P55287 CDH11 Cadherin 11 −0.149776496 −2.237629717 0.04145715624086360

Q96RD9 FCRL5 Fc receptor-like 5 −0.034069414 −0.527369507 0.04145715624086360

P21926 CD9 CD9 molecule −0.056132135 −0.78939602 0.04145715624086360

P02746 C1QB Complement C1q subcomponent 
subunit B

0.013951103 0.134418819 0.04145715624086360

Q9NQC3 RTN4 Reticulon 4 −0.122514211 −1.617124146 0.04162111693323930

P10909 CLU Clusterin 0.014330575 0.146386665 0.04293539920884360

P11279 LAMP1 Lysosome-associated membrane 
glycoprotein 1

0.013986417 0.153178004 0.04321300399755200

Q96PD5 PGLYRP2 N-acetylmuramoyl-l-alanine amidase 0.014620832 0.141416175 0.04742114492279560

Proteins are presented with their UniProt accession number and corresponding protein name. The asterisks indicate the highly abundant proteins that were depleted in the pre-processing 
stage. The effect size indicates the log2-fold-change in expression that results from a unit change in SDQ. The P-values were calculated using DeqMS SDQ score as continuous variable and 
adjusted using the Benjamini–Hochberg method. log2FC, log2-fold-change (ratio of means).
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Fig. 2 | Enriched biological processes and pathways. a, The results of the 
STRINGdb clustering analysis; the proteins positively correlated with the 
SDQ score are highlighted green, whereas negatively correlated proteins are 
highlighted red. The number and colors of the lines represent the evidence 
for the protein connection according to the default STRING database scheme. 

b, Significantly enriched Reactome pathways. The colors indicate functional 
grouping. The enrichment was performed using the enrichPathway function of 
the ReactomePA package, which uses the hypergeometric model. The P-value was 
adjusted using the Benjamini–Hochberg method.

Table 2 (continued) | Plasma proteins with abundance changes associated with the SDQ score
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bipolar disorder patients in several blood proteomic studies43,44,46. We 
found positive correlations with the SDQ score in coagulation factor XI, 
coagulation factor X and coagulation factor II (thrombin)—all of which 
are involved in blood coagulation. Increased levels of prothrombin 
and several coagulation factors (F5, F9, F12, F13A1) were also found by 
English et al. in adolescents who later developed a psychotic disorder34.

Several complement components and factors such as C6, C1S, and 
CFI were altered (mostly increased) in high-risk psychotic disorder 
adolescents33,34 and first-episode SCZ-patients47. In our study, com-
plement proteins such as complement C1q and C1r subcomponents, 
complement factor I, complement factor H and complement C2 were 
significantly and mainly positively associated with the SDQ score. Jiang 
et al.48 suggested that complement activation together with metabolic 
up-regulation can increase oxidative stress, which can induce protein 
damage and cell apoptosis, and thus contribute to the development 
of SCZ. Altogether, our results are in line with the current understand-
ing of the role of altered immune responses and blood coagulation 
in pathophysiology of mental disorders. Furthermore, our findings 
support the increasing evidence on early changes in coagulation and 
complement cascades in predisposition to—and development of—men-
tal health issues in adolescents.

A symbolic-regression-based algorithm, QLattice, was used to 
gain an insight into the potential of proteins to predict the SDQ status. 
The formed models comprised eleven proteins, four of which have a 
previously reported connection to the CNS, neurogenesis or mental 
health. Of the eleven proteins, eight were reported to belong to the 
first cluster according to STRING database analysis. Of the proteins 
not previously connected to the CNS, the LYPD3 protein was reported 
to be an amyloid precursor protein interactor49, which can explain its 
coincidence with APLP1, CAMK2B and CD9 in our predicted models.

APLP1 is a protein residing predominantly in brain tissue, and it has 
been shown to be involved in brain development50 and synaptogenesis 
during post-natal development in mice51. We identified a significant 
negative association between APLP1 and the SDQ score. Pandolfo and 
colleagues have suggested that amyloid could be a marker of cogni-
tive impairment and altered neurodevelopment in mental diseases. 
Decreased β-amyloid proteins in CSF have been reported in patients 
with SCZ and MDD, and altered amyloid precursor protein metabolism 
in patients with bipolar disorders52. However, although the role of 
APLP1 in the pathogenesis of mental disorders is still unknown, this 
protein—on the basis of our data—warrants further investigation in 
the context of adolescent mental health.

Two other proteins—RTN453,54 and CAMK2B—have been reported 
to be connected to neuronal development and neuroplasticity55,56. 
CAMK2B was positively associated with the SDQ score. It is a protein 
connected to dendritic spine and synapse formation, neuronal plastic-
ity and regulation of sarcoplasmic reticulum Ca2+ transport in skeletal 
muscle57. The beta subunit was reported to be brain specific55, yet little  
is known of its involvement in mental disorders. Another protein  
present in the top model was RTN4, which was negatively associated 
with the SDQ score, and has been previously shown to be associated 

with SCZ53,58. RTN4 is a membrane shaping protein in the endoplasmic 
reticulum involved in the maintenance of the endoplasmic reticulum 
membrane tubular integrity. Impairment in the RTN4 process has been 
connected to neurodegeneration. The RTN4A-subtype, also known as 
Nogo-A, is localized in the CNS and has a role in neuronal growth and 
maturation during nervous system development59. Furthermore, RTN4 
was shown to be connected with social behavior and spatial cognition 
in a study using mice with a missense mutation in the RTN4 receptor59,60. 
The involvement of RTN4 in adolescent mental health remains a topic 
worthy of detailed investigation. The fourth protein with reported 
connection to CNS was Cadherin 11 (P55287), which has been shown 
to be enriched in several brain areas during dendrite formation and 
synaptogenesis61–63. Given that the proteins reported as probable bio-
markers belonged to the same cluster according to STRING database, 
and that four of the proteins were shown to be connected to the CNS 
and neuronal development, it is conceivable that all of the proteins 
from the cluster are connected to one process. Further investigation 
of this network might shed new light on the nuances of brain develop-
ment and mental health in adolescents.

Girls in the raised SDQ score (>15) group reported slightly earlier 
puberty changes compared with the lower SDQ score (<14) group, 
whereas in boys, the self-reported puberty changes between the lower 
and the raised SDQ score groups seemed to be the opposite (Supple-
mentary Table 4); however, differences in puberty changes were minor 
and sex was added as confounding factor in our linear models. We also 
examined other possible confounding factors available, including the 
education level for each parent, the levels of media consumption, levels 
of social media engagement, drug and alcohol use, and physical activ-
ity. The results showed no significant differences among the groups 
(P-value > 0.05). Furthermore, we used the information on the school 
of the subjects attended as a random variable in linear modeling. No 
differences in the number of significant proteins were found. We thus 
concluded that these factors were not likely to confound the investiga-
tion of the connection of SDQ to the protein abundance levels.

As the main limitation in this study, the sample number is low in 
relation to the identified proteins. Linear modeling was performed 
along with some group-based comparisons to strengthen the statistical 
power of the analysis, and we managed to detect statistically significant 
alterations with these sample numbers. Similar N-numbers have also 
been used in past studies on serum and plasma protein biomarkers in 
SCZ, MDD and bipolar disorder patients45. Furthermore, overnight 
fasting samples are preferred for proteomics analysis as food intake 
can influence the protein composition and concentrations in blood64. 
The plasma samples used in the current study were non-fasting samples 
due to the practical and ethical issues related to the implementation of 
the WALNUTs study as blood samples were drawn from the adolescents 
at school in the afternoon.

Conclusion
In this explorative study, we identified protein-based susceptibility 
biomarker candidates associated with the self-reported SDQ score in 

Table 3 | The models returned by the QLattice with lowest BIC score

Model number Model functional form genes Model functional form accessions BIC Training set AUC

1 APLP1 + CAMK2B x RTN4 P51693 + Q13554 x Q9NQC3 49.33 0.95

2 PIGR + SERPINA4 + CDH11 P01833 + P29622 + P55287 54.25 0.95

3 LYPD3 + SERPING1+CAMK2B O95274 + P05155 + Q13554;Q13555 49.88 0.95

4 LYPD3 + BTD + APLP1 O95274 + P43251 + P51693 53.85 0.93

5 LYPD3 + LCP1 + CD9 O95274 + P13796 + P21926 48.46 0.94

Proteins in the models are potentially predictive biomarkers for the raised SDQ score in adolescents. The model for each protein contains gene names and protein accession numbers. Training 
set AUC performances and the BIC scores for each model are comparable. The first model contained non-linear interacting proteins CAMK2B and RTN4, whereas all of the other interactions 
were linear. The protein names and their relation to the accession codes are presented in Table 1.
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adolescents reflecting a risk of developing mental health dysfunction. 
Significant alterations were found in proteins involved in the immune 
response, blood coagulation and hemostasis, neuronal degeneration 
and neurogenesis. Further studies are needed to confirm and validate 
these biomarker candidates in larger cohorts, as well as follow-up data 
and studies to evaluate whether these biomarkers are associated with 
the risk of transition to the clinical state and mental disorders.

Methods
Participant recruitment and sample collection
The studies were reviewed and approved by CEIC Parc Salut Mar Clini-
cal Research Ethics Committee (approval nos. 2015/6026 WALNUTs 
and 2020/9688–Equal-life). Written informed consent to participate 
in the original WALNUTs study was provided by the participants’ legal 
guardian/next of kin. No additional consent was needed for this study, 
all of the participants were offered free tickets to the science museum 
of Barcelona. The specifics of the WALNUTs cohort formation were 
described in previous publications21,65. The current manuscript used 
a subset of 372 baseline blood samples before any dietary intervention 
originally described in a previous work65. For this study, a sub-group of 
91 samples was used to perform the proteomics analysis. These samples 
were selected on the basis of the SDQ scores: 42 with the lowest SDQ 
score (SDQ = 0–14) and 49 with the highest SDQ score (SDQ = 15–25). 
Samples were drawn by a nurse using K2EDTA plus tubes, rested for 1 h 
and then centrifuged at 2,500 × g for 20 min at 20 °C, refrigerated at 
4 °C, and frozen to −80 °C within 4 h after extraction65, stored at –80 °C, 
and were not thawed until the protein depletion was performed before 
the proteomics analysis.

High-abundance protein depletion
Albumin and IgG represent more than 70% of total protein levels in 
human plasma samples. The depletion of high-abundant proteins is 
therefore essential to the identification and analysis of low-abundant 
proteins. A commercial kit (High Select Top14 Abundant Protein Deple-
tion Mini Spin Columns, catalogue no. A36370, ThermoScientific) was 
used to deplete the 14 most abundant proteins from plasma before 
the proteomic analyses. The depleted proteins were human serum 
albumin, albumin, IgG, IgA, IgM, IgD, IgE, kappa and lambda light 
chains, α1-acidglycoprotein, α1-antitrypsin, α2-macroglobulin, apoli-
poprotein A1, fibrinogen, haptoglobin and transferrin, according to 
manufacturer’s manual. Briefly, 10 µl of total plasma was added to the 
mini spin columns and incubated for 10 min while rotating, followed 
by centrifugation of the columns (1,000 × g) for 2 min. The filtrate was 
collected in 2 ml plastic tubes and stored at −20 °C until preparation for 
mass spectrometry proteomic analyses, which were performed at the 
Turku Proteomics Facility supported by Biocenter Finland.

Protein precipitation and digestion
Samples were acetone precipitated and subjected to in-solution diges-
tion. Shortly, four volumes of ice-cold acetone were used to precipitate 
proteins. Precipitated proteins were resuspended to 8 M Urea, 50 mM 
Tris-HCl for protein denaturation, reduced with 5 mM dithiothreitol 
and alkylated with 13 mM iodoacetamide. Proteins were digested to 
peptides with trypsin (Promega) (enzyme:protein ratio 1:30) at 37 °C 
overnight. After digestion the peptides were desalted with a Sep-Pak 
C18 96-well plate (Waters), evaporated and stored at −20 °C.

Mass spectrometry analysis
Digested peptide samples were dissolved in 0.1% formic acid and pep-
tide concentrations were determined with a NanoDrop device. Samples 
were spiked with iRT peptides (Biognosys) for retention time calibra-
tion. Equal amounts of samples were analyzed on a nanoflow HPLC sys-
tem (Easy-nLC1200, Thermo Fisher Scientific) coupled to the Q Exactive 
HF Orbitrap mass spectrometer (Thermo Fisher Scientific) equipped 
with a nano-electrospray ionization source. Peptides were first loaded 

onto a trapping column and subsequently separated in-line on a 15 cm 
C18 column (75 μm × 15 cm, ReproSil-Pur 3 μm 120 Å C18-AQ, Dr. Maisch 
HPLC GmbH). The mobile phase consisted of water with 0.1% formic 
acid (solvent A) or acetonitrile/water (80:20 (v/v)) with 0.1% formic acid 
(solvent B). A 100 min gradient was used to elute peptides (50 min from 
5% to 21% solvent B followed by 40 min from 21% to 36 min solvent B). 
Mass spectrometry data were acquired automatically by using Thermo 
Xcalibur v.4.1 software (catalog no. OPTON-30965; Thermo Scientific). 
In a data-independent acquisition (DIA) method, a duty cycle contained 
one full scan (400–1,000 m/z) and 40 DIA MS/MS scans covering the 
mass range 400–1,000 with variable width isolation windows.

Protein identification and quantification analysis
Data analysis consisted of protein identifications and label-free 
quantifications of protein abundances. The data were analyzed using 
the Spectronaut software (Biognosys; v.17.1.221229). The direct DIA 
approach was used to identify proteins and label-free quantifications 
were performed with the MaxLFQ algorithm in Spectronaut. The main 
data analysis parameters in Spectronaut were: (1) enzyme (Trypsin/P); 
(2) up to two missed cleavages; (3) fixed modification (carbamidome-
thyl (cysteine)); (4) variable modifications (acetyl (protein N-terminus) 
and oxidation (methionine)); (5) the precursor FDR cutoff (0.01); (6) the 
protein FDR cutoff (0.01); (7) the quantification MS level (MS2); (8) the 
quantification type (area under the curve within integration bounda-
ries for each targeted ion); (9) the protein database (Swiss-Prot 2022_05 
Homo Sapiens66 and Universal Protein Contaminant database67); and 
(10) normalization (global median normalization). All of the peptides 
were used for quantification.

Statistical analysis
Data pre-processing and statistical analyses were performed using 
R (v.4.2.1). Principal component analysis was performed to assess 
the general quality of the dataset (Supplementary Fig. 1). Identified 
proteins with more than 20% missing values were excluded from the 
analysis. Sample normalization was performed using the medianCen-
tering method from the proBatch method68. Missing values remaining 
in the dataset were input using the sample minimum method69. We 
have compared the low SDQ and raised SDQ groups for the following 
variables: the education level for each parent, the levels of media con-
sumption, levels of social media engagement, drug and alcohol use, 
and physical activity. We tested whether there are differences of the 
confounding factors between the groups using the one-way ANOVA 
test. After correcting for multiple comparisons, no socio-economic, 
sociodemographic or other factors showed any significant difference 
between the groups, meaning that the analyzed groups do not have 
significant differences in between the mean values of those factors.

Bioinformatic data analysis
The DeqMS (v.1.16.0) package was used for the differential abundance 
analysis36, with SDQ score used as a continuous variable. The sex and 
age of the adolescents were included into the linear model to ensure 
that the proteins reported are associated with SDQ and were not influ-
enced by confounding factors. The differences in protein abundances 
were expressed as log2-fold-change (the ratio of the means of raised 
(numerator) and low (denominator) SDQ groups). The P-values were 
adjusted using Benjamini–Hochberg procedure.

Plasma proteomic datasets from adolescents represent a very low 
number of all the proteomic datasets70, so to better investigate the func-
tional enrichment the full list of all proteins found in this study was used 
as the background gene list in the enrichment analyses. To characterize 
the enriched pathways related to the identified proteins, significantly 
differently abundant proteins (P ≤ 0.05) associated with the SDQ score 
were used in further bioinformatic data analyses. Proteins depleted 
before mass spectrometry analysis that showed significant differ-
ences between groups were considered a possible source of bias and 
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thus were excluded. The Reactome pathways were investigated using 
the ReactomePA (v.1.9.4) R package38. The enrichment was performed 
using the enrichPathway function of the ReactomePA package, which 
uses the hypergeometric model. The P-value was adjusted using the 
Benjamini–Hochberg method. We used IPA (Ingenuity Systems) for 
the further enrichment analyses In IPA core analysis, default software 
parameters were used (reference set: ingenuity knowledge base—genes 
only). The z-score values were used to identify canonical pathways that 
were expected to be changed by their activity. The STRINGdb package 
was used to get the protein–protein interaction information for the sig-
nificantly differentially abundant proteins from the STRING database 
(v.11.5)37. The fastgreedy clustering function was used to extract gene 
clusters with strong associations. A novel symbolic-regression-based 
algorithm, QLattice, which is part of the Feyn package (v.3.0.3), was 
used to generate models combining proteins with the best predictive 
power for the SDQ score based on protein biomarkers39. The algorithm 
was used to find the models combining proteins with the best predic-
tive power. Possible biomarkers were searched among the 58 proteins 
significantly associated with the SDQ score, with five rounds of cross-
validation. The resulting models were identified as the top models in 
each of the cross-validation. Result visualizations were performed 
using ggplot2 (v.3.4.0)71 and ComplexHeatmap72 (v.2.14.0) packages.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data analyzed in this study are subject to the following licenses/
restrictions: the WALNUTs data art not publicly available due to the 
restrictions of informed consent. The data contain personal informa-
tion on children and, according to the ethical approval, they should be 
kept confidential. Data are available from the corresponding author on 
reasonable request for researchers who meet the criteria for access to 
confidential data. A data-use/transfer agreement is needed to ensure 
the protection of privacy and compliance with national data protection 
legislation, the content and specific clauses of which will depend on 
the nature of the requested data.
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Data collection Data was analyzed by Spectronaut software (Biognosys; version 17.0. 17.1.221229). The direct DIA approach was used to identify proteins and 
label-free quantifications were performed with the MaxLFQ algorithm in Spectronaut. Main data analysis parameters in Spectronaut were: (i) 
Enzyme: Trypsin/P; (ii) Fixed modifications: Carbamidomethyl (cysteine); (iii) Variable modifications: Acetyl (protein N-terminus) and oxidation 
(methionine); (iv) Protein database: Homo sapiens Swiss-Prot reference proteome (Uniprot release 2021_02); and (v) Normalization: Global 
median normalization. All the peptides were used for quantification.

Data analysis Data pre-processing and statistical analyses were performed using R (version 4.2.1.). For the differential abundance analysis DeqMS (v. 1.16.0) 
package was used 67, with SDQ score used as a continuous variable. QLattice a part of the Feyn package (v. 3.0.3), a symbolic-regression-
based ML algorithm was used to build models to find the proteins with the best predictive power. Result visualisations were performed using 
ggplot2 (v3.4.0) and ComplexHeatmap (v.2.14.0) packages.
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The String-DB (v. 11.5) database (https://string-db.org/) was used for data annotation. 
The Reactome (v. 83) database (https://reactome.org/) was used for data annotation. 
Ingenuity Pathway analysis was performed in this study, using the IPA 
 
The data analysed in this study is subject to the following licenses/restrictions: The Walnuts data is not publicly available due to the restrictions of informed consent. 
The data contain personal information of children and according to the ethical approval, they should be kept confidential. Data are available from the corresponding 
author upon reasonable request for researchers who meet the criteria for access to confidential data. To ensure the protection of privacy and compliance with 
national data protection legislation, a data use/transfer agreement is needed, the content and specific clauses of which will depend on the nature of the requested 
data.
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Reporting on sex and gender The biological sex information was obtained from school databases  for the original WALNUTs manuscript.

Population characteristics The peripheral blood plasma samples were obtained and analyzed from a subsample of 91 adolescents aged 11-16 years, of 
the WALNUTs regional Spanish study (Table 1). The samples were collected in 2016-2018 approximately at the same moment 
as the participants filled out the Strengths and Difficulties Questionnaire (SDQ). The SDQ is a screening questionnaire for 
emotional and behavioral problems in children and young people assessing the impact of difficulties on the child’s life, such 
as (i) emotional symptoms, (ii) conduct problems, (iii) hyperactivity/inattention, (iv) peer relationship problems, and (v) 
prosocial behavior. Based on the self-reported SDQ score, the plasma samples were categorized into low (0-14) and raised 
(>15-17) groups. 

Recruitment The original WALNUTs study performed age-, gender-, and maternal education-stratified random computerized sampling 
within each school to assign adolescents to one of the two groups.

Ethics oversight The studies were reviewed and approved by CEIC Parc Salut Mar Clinical Research Ethics Committee (approval numbers: 
2015/6026 Walnuts and 2020/9688–Equal-life). Written informed consent to participate in the original WALNUTs study was 
provided by the participants' legal guardian/next of kin. No additional consent was needed for this study

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size This is an exploratory study for the investigation of possible connections between the SDQ and abundancies of plasma proteins in adolescents. 
All the individuals from with raised SDQ score were analysed in this study, and an equal number of individuals with low SDQ score were also 
included as the control group.

Data exclusions No data was excluded from the analysis.

Replication Since the samples were taken from a cohort study, all the samples were analysed. There was no other comparable cohort available. There was 
no longitudinal data available.

Randomization The original study was randomised. The samples were also randomised prior to protein sequencing.

Blinding The SDQ score was calculated after the plasma samples were taken. The samples were anonymised for the protein depletion and the 
proteomics analysis step.
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