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An Evaluation of Survival Curve

Extrapolation Techniques Using
Long-Term Observational Cancer Data

Adrian Vickers

Objectives. Uncertainty in survival prediction beyond trial follow-up is highly influential in cost-effectiveness analyses
of oncology products. This research provides an empirical evaluation of the accuracy of alternative methods and rec-
ommendations for their implementation. Methods. Mature (15-year) survival data were reconstructed from a pub-
lished database study for ‘‘no treatment,’’ radiotherapy, surgery plus radiotherapy, and surgery in early stage non–
small cell lung cancer in an elderly patient population. Censored data sets were created from these data to simulate
immature trial data (for 1- to 10-year follow-up). A second data set with mature (9-year) survival data for no treat-
ment was used to extrapolate the predictions from models fitted to the first data set. Six methodological approaches
were used to fit models to the simulated data and extrapolate beyond trial follow-up. Model performance was evalu-
ated by comparing the relative difference in mean survival estimates and the absolute error in the difference in mean
survival v. the control with those from the original mature survival data set. Results. Model performance depended
on the treatment comparison scenario. All models performed reasonably well when there was a small short-term
treatment effect, with the Bayesian model coping better with shorter follow-up times. However, in other scenarios,
the most flexible Bayesian model that could be estimated in practice appeared to fit the data less well than the models
that used the external data separately. Where there was a large treatment effect (hazard ratio = 0.4), models that
used external data separately performed best. Conclusions. Models that directly use mature external data can improve
the accuracy of survival predictions. Recommendations on modeling strategies are made for different treatment bene-
fit scenarios.
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Survival analysis has become an important part of cost-
effectiveness methods for health technology appraisals.
Current health technology assessments usually require
mean survival times to estimate the life years gained or,
for Markov models, transition probabilities per cycle.
Mean survival times are typically derived from fitting
parametric survival curves for the lifetime of patients and
the integral of the fitted survival curve used to estimate
mean survival. However, early in their training, statisti-
cians are warned against extrapolating statistical rela-
tionships past the range of observed data.1 Survival
models can produce meaningfully different mean overall

survival times even when they show little differentiation
in model fit.2 Davies et al.3 provide evidence of changing
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hazard rates over time and discuss the associated bias if
only short-term data are used to predict long-term sur-
vival. The current National Institute for Health and Care
and Excellence (NICE) Decision Support Unit (DSU)
guidelines4 place an emphasis on choosing models by
considering internal and external validity and conducting
sensitivity analyses with alternative plausible models.
NICE5 requires several alternative scenarios reflecting
different assumptions about future treatment effects,
which typically include the assumption that treatment
does not provide further benefit beyond the treatment
period as well as more optimistic assumptions. However,
there is no guarantee that any model, even the best-fit
model, will give accurate predictions of the future.2,6

Alternative approaches to survival curve extrapolation
include model-averaging techniques,7–9 hybrid mod-
els,10,11 Bayesian poly-Weibull models,12,13 cure mod-
els,14 and combination of trial and external data.15,16 The
need for long-term data to perform survival curve extra-
polation has been expressed.15–17 Despite the number of
methods in the literature, little work has been conducted
to assess how reliable survival predictions are compared
to actual or simulated long-term data.

The aim of this article was to evaluate the perfor-
mance of a range of models under different scenarios
and make recommendations on how to choose an appro-
priate analytical strategy for future projects. To achieve
this aim, a long-term published data set was identified in
early stage non–small cell lung cancer (NSCLC) in
elderly patients. The data contain 15.5 years of follow-up
and represent complete survival estimates for 4 treat-
ments. These data contained examples of 3 scenarios that
are commonly found in data from randomized con-
trolled trials (RCTs):

� Small short-term benefit of treatment effect
(radiotherapy)

� Small long-term benefit of treatment effect (surgery
plus radiotherapy)

� Large long-term benefit of treatment effect (surgery)

From these data, pseudo-short-term trial data sets were
created. Six different approaches were used to fit survival
models and perform the extrapolation, 4 of which made
use of long-term external data. Performance of these
models was assessed using relative error of mean survival
estimates and absolute error for difference in mean sur-
vival v. the control by comparing predicted mean overall
survival distributions to those derived from Kaplan-
Meier estimates from bootstrapped samples from the
complete data set. Extrapolated long-term survival
curves, mean survival distributions, and sensitivity

analyses are presented. Finally, the findings and limita-
tions of these methods are discussed.

Despite this research being based on observational
data, it is expected that the results and conclusions will
be relevant to the problems associated with survival
curve extrapolation from RCTs.

Methods

Observational Treatment Comparison Data

Ganti et al.18 present Kaplan-Meier estimates separately
for stage I and II NSCLC for an elderly population (�80
years old) derived from Surveillance, Epidemiology, and
End Results (SEER) data for patients diagnosed between
1998 and 2007. Kaplan-Meier estimates were presented
for no treatment (n = 343), radiotherapy (n = 346), sur-
gery in combination with radiotherapy (n = 55), and
surgery alone (n = 594). The data contained some
observed differences in survival between treatment arms
that cannot be ascribed directly to treatment effects, as
there may be confounding by severity in assignment to
different treatment arms (e.g., percentage of stage II can-
cer: no treatment, 15%; radiation, 20%; surgery, 13%;
surgery in combination with radiotherapy, 44%). Only
patients who were deemed fit to undergo surgery by clin-
icians underwent resection. There was also an increasing
trend during the study period of patients opting for no
treatment.18

The data were digitized and reconstructed following
the methods described by Guyot et al.19 Kapan-Meier
estimates from the reconstructed data are presented in
the online appendix (Suppl. Figure S1). This chart shows
a steep drop from 0 to 1 month for the no-treatment arm
and high survival probability for the surgery plus radio-
therapy arm. This result may be due to the data being
observational and the possibility that some patients may
have died before the intended treatment started or that
patients may have had a short life expectancy and did
not receive any treatment. Conversely, the fittest patients
may have been considered suitable for radiotherapy plus
surgery. A sudden drop in survival at the start of a study
is rarely observed in oncology trials, as they typically
have an inclusion criterion that patients have a life
expectancy of 3 months. To mimic a trial in which such
patients would likely not be included, 1 month was sub-
tracted from patients’ survival times in all treatment
arms and records with a negative time removed from the
data. The resulting Kaplan-Meier estimates are pre-
sented in Figure 1 (color version is provided in the online
appendix). The overall hazard ratios, 95% confidence
intervals (CIs), and P values from this data set were
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radiotherapy (0.92 [0.79–1.08]; P = 0.334), surgery plus
radiotherapy (0.70 [0.52–0.93]; P = 0.015), and surgery
(0.37 [0.32–0.44]; P \ 0.0001). Smoothed hazard rates
and hazard ratios estimated from these data are pre-
sented in the online appendix (Suppl. Figure S2 and
Suppl. Figure S3, respectively). The hazard rates and
hazard ratios were observed to change over time. In par-
ticular, the hazard rates for radiotherapy showed a sig-
nificant increase followed by a significant decrease, and
the hazard rates for surgery alone showed a significant
increase during the follow-up time. The hazard ratios for
surgery showed a significant change v. no treatment,
remaining close to 0.4 for the first 3 years and changing
to be close to 0.8 from 5.5 years.

It was assumed that patients could enter the trial at
any time point in the first 12 months (assuming a uni-
form distribution) and that patients survived according

to the data presented in Figure 1. The data were cut at 1
to 10 years at annual intervals, with patients still alive
censored at the end of each cut point. Kaplan-Meier esti-
mates for each cut point are presented in the online
appendix (Suppl. Figure S4).

Disease-Specific External Data

A common problem of using external data to aid extra-
polation is that data from a different source will not
match the trial population exactly. The treatments used
are likely to represent a broader range of treatment
options, and although patients may have similar disease
characteristics, they are likely to be from different geo-
graphical areas and/or have a broader range of charac-
teristics. Also, because the data are longer term, they
represent patients who started treatment further back in

Figure 1 Data presented by Ganti et al.18 for early stage non–small cell lung cancer in elderly patients after removal of the first
month of data from all treatment arms.
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time when the standard of care may have been different
to that observed during the trial. A search of the litera-
ture was conducted to identify an additional long-term
data set. The closest found was that presented by Bach
et al.20

Bach et al.20 present Kaplan-Meier estimates for black
and white patient populations with stage I and II
NSCLC who were �65 years old and were diagnosed
between 1985 and 1993 (n = 2,589). These data were

reconstructed using the method described by Guyot
et al.19 One month was subtracted from survival times,
and records with negative values were removed, to match
the data from Ganti et al.18 The Kapan-Meier estimates
from the reconstructed data are presented in Figure 2A.
These data were matched to the no-treatment data pre-
sented by Ganti et al.18 by fitting accelerated failure time
models (Weibull, generalized gamma, log-normal, log-
logistic) and applying the time acceleration factor

Figure 2 Steps involved in estimating the hazard rates from disease-specific external data and general population data for the no-
treatment arm for each cut point. Original reconstructed data for no treatment (A). Bach et al.20 data adjusted using a time
acceleration factor to match the data presented by Ganti et al.18 (B). Check that time acceleration factor was consistent across
cut points (C). Royston and Parmer24 spline model fitted to the general population data after removal of infant mortality (\3

years) (D). Royston and Parmer24 spline model fitted to the adjusted data presented by Bach et al.,20 with extrapolation based on
hazard ratio–adjusted predictions from the model fitted to general population data (E). Predicted hazard rates for the external
data derived from the model presented in chart (E) and after follow-up (9 years) from the adjusted hazard rates from the general
population data (F). CI, confidence interval; CrI, credible interval.
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(multiply/divide original time values by the time accel-
eration factor21) from the best-fitting model (Weibull) to
the Bach et al.20 data. Survival times that exceeded the
maximum follow-up time from Bach et al.20 were cen-
sored at that time point. Figure 2B presents this adjust-
ment for the complete data set. This procedure was
repeated for each cut point; the resulting time accelera-
tion factors for each cut point are presented in Figure
2C. These data appeared to contain little information on
general mortality, so a further extrapolation was needed
using general population data. A comparison of the
hazard rates and hazard ratios from the complete data
presented by Ganti et al.18 and the time-accelerated
adjusted data presented by Bach et al.20 (with the first
month of data removed) is presented in the appendix
(Suppl. Figure S5 and Suppl. Figure S6, respectively).
There was good agreement in these predictions for a
follow-up of up to 6 years.

General Population Data

Bell and Miller22 present general population life table
data for a cohort of 100,000 patients in the United States.
These were reconstructed for 10,000 individuals using the
methods described by Guyot et al.19 and were weighted
according to sex for patients �80 years old from data pre-
sented by Howden and Meyer.23 The Kaplan-Meier esti-
mates and best-fitting model (Royston and Parmar24

spline model with 3 knots assuming proportional hazards)
predictions are presented in Figure 2D.

Model to Extrapolate the Disease-Specific
External Data Using the General Population
Data

Parametric models with a proportional hazard property
(Weibull, Gompertz, and Royston and Parmar24 spline
models with 1–4 knots assuming proportional hazards)
were fitted to the time-accelerated adjusted data from
Bach et al.20 The Royston and Parmar24 spline model
with 3 knots gave the best fit according to both Akaike
information criterion (AIC) and Bayesian information
criterion (BIC). The hazard rates were used to the end of
follow-up for these data; then after this time point, pre-
dicted hazard rates were derived from the model fitted to
the general population data for an age distribution (half
normal) that matched patients �80 years of age (plus the
follow-up time) according to Howden and Meyer.23 The
hazard ratio was estimated for the external data at end
of follow-up v. the general population data, and this was
applied to the predicted hazards from the external data

to give a seamless transition between the 2 models. The
resulting survival curve is presented in Figure 2E and the
predicted hazard rates are presented in Figure 2F.

Reference Model for Complete Data Set

Kaplan-Meier estimates derived from bootstrapped data
(random sample with replacement25) and mean survival
distributions are presented in the online appendix (Suppl.
Figure S7). Predicted mean survival times were estimated
as the area under each of 1000 bootstrap-predicted curves
based on natural spline-based integration with 0.25-
month intervals and a time horizon of 100 years (a trape-
zoid method gave virtually identical results).

Models Fitted to the Short-Term Observational
Treatment Comparison Data Sets

The following models were fitted to the short-term obser-
vational data sets:

� Most plausible parametric model (Latimer4)
� Most plausible parametric model with external data

extrapolation
� Bootstrapped hybrid model (adapted from Gelber

et al.10 and Bagust and Beale11)
� Bootstrapped hybrid model with external data

extrapolation
� Ensemble of parametric models with external data

extrapolation
� Bayesian simultaneous flexible spline–based model

that used the short-term trial data and survival pre-
dictions based on the models fitted to the external
and general population data (adapted from Guyot
et al.15)

For each model, survival probabilities were estimated at
0.25-month intervals with a time horizon of 100 years for
1000 bootstrap or simulated values, depending on the
method. External data extrapolation followed the hazard
ratio tapering method described below.

Most plausible parametric model. The following para-
metric models were fitted to the short-term data sets:
exponential, nonstratified generalized gamma, and strati-
fied and nonstratified Weibull, Gompertz, log-normal,
log-logistic, and Royston and Parmar24 spline models
with 1 to 3 knots. Stratified models allowed all para-
meters to vary by treatment. The validity of the models
was assessed by comparing predictions for all time points
in common to those from the external data of Bach
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et al.,20 determining whether predictions were biologi-
cally plausible given the age of patients and, if needed,
using model fit statistics from the short-term data (AIC
and BIC).

Bootstrapped hybrid model. Bootstrap samples were cre-
ated from the short-term data sets for each study arm.
For each sample, the cumulative hazard rates were esti-
mated and a Chow breakpoint test26 used to determine
the time point that explained the most variation in the
change in slope. This was restricted to be less than or
equal to half the follow-up time. For each bootstrap
sample in which time points were less than the cut point,
Kaplan-Meier estimates were used, after the cut point
parametric models (exponential, Weibull, log-normal,
and log-logistic) were fitted. The validity of the models
was assessed by comparing predictions for all time points
in common with those from the external data of Bach
et al.,20 determining biological plausibility of the predic-
tions, and, if needed, using the proportion of times each
parametric part of the model gave the best fit according
to AIC and BIC.

Ensemble of parametric predictions with external data.
This method was based on one of the methods reviewed
by Jackson et al.16 The same range of models used to
find the most plausible parametric model was fitted to
the short-term data sets. Survival predictions were cre-
ated from an ensemble of models based on the mean of
Akaike weights and Bayesian weights derived from AIC
and BIC values.27–30 Survival predictions were sampled
from each of the 1000 simulations to reflect these
weights. The hazard rates from the models fitted to the
disease-specific external data and general population
data described in Figure 2 were used after the follow-up
for the no-treatment arm data. For the other treatments,
these hazard rates were also used, but hazard ratio taper-
ing was applied.31

Extrapolation using external data and hazard ratio
tapering. From the end of follow-up, of the short-term
data, the hazard rates from the model fitted to the exter-
nal data and general population data were used for the
no-treatment arm. For the other treatments, hazard ratio
tapering was applied to these hazard rates.

When the treatment effect was expressed as a hazard
ratio of the hazard rates (h) for the control (A) and treat-
ment under investigation (B), hB(t)/hA(t), the effect for
time after follow-up (t . t1) was assumed to diminish

over time, and thus hB(t)/hA(t) increased or decreased to
1 at time tc.

If t� t1, then hazard rates were estimated directly
from the trial. For the control, if t . t1, hazard rates
were estimated from the external data. For the other
treatments, if t . t1 and t \ tc, a linear equation was
used to estimate the hazard ratio from time t1 to tc (= 1)
relative to the control as follows:

b=

1� hB t1ð Þ
hA t1ð Þ

tc � t1

hB tð Þ
hA tð Þ =

hB t1ð Þ
hA t1ð Þ

+ bt:

The time tc was derived from simulated values from a
normal distribution with a mean (m) of 10 years and stan-
dard deviation (s) of 2 years:

tc ; N m,s2
� �

:

This formula resulted in a distribution with a range of
approximately 3 to 17 years. This distribution reflected a
belief that the treatment effect may continue a long time
after patients received treatment but that the upper limit
of the distribution could not exceed the plausible limit
imposed by age. The time point of 10 years also reflected
the approximate time that the hazard rates from the gen-
eral population exceeded those predicted from the exter-
nal data. After time tc, hazard rates, for all treatment
arms, were derived from the external data.

Bayesian simultaneous flexible spline–based model. The
Bayesian simultaneous model described by Guyot et al.15

was adapted to reflect the more readily available data
used in this study. For the external data, the numbers of
patients alive and at risk at annual time points were
derived from the predicted survival probability from the
model fitted to the disease-specific external data and gen-
eral population data shown in Figure 2E multiplied by
the number of patients at the start of the study (2589).
The Guyot model assumes that the conditional survival
for the reference treatment is likely to converge to that
observed in the external data after follow-up. It was
assumed that the 1-year conditional survival for patients
in the no-treatment arm from the short-term compara-
tive treatment data at time t conditional on being alive at
time (t – 1)—CS0, (t |t – 1), where CS0 is the survival
probability from the short-term comparative data—is no
different from the time-accelerated external population
data, CSext(t |t – 1), from N � t1 years onward until time
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Ntend, where N is the whole number sequence of years
from the end of the short-term data to the time no one is
predicted to be alive from the model fitted to the external
and general population data. An example of these data
for the 4-year cut-point is presented in the online appen-
dix (Suppl. Table S2). Assuming a binomial likelihood
for 1-year conditional survival probabilities from the
external data, the following was implemented:

rext tjt � 1ð Þ; Binomial(CSext tjt � 1ð Þ, nextXR tjt � 1ð Þ),

where CSext (t |t– 1) is constrained to be equal to CS0, (t |
t– 1) so that

CSext tjt � 1ð Þ=CS0 tjt � 1ð Þ, N�t1 � t�Ntend
,

where rext is the number of people alive and next is the
number of people at risk between time t and t – 1 who
are alive at time t – 1.

The hazard ratio was assumed to be piecewise con-
stant, changing every year since the start of the study. At
each year, a different normal prior distribution was used
for the hazard ratio. The mean of this distribution was
assumed to taper to a value of 1 at 10 years from the
start of the study, starting with a hazard ratio derived
from an equivalent frequentist spline-based model fitted
to the short-term data (Suppl. Table S3 in the online
appendix). The Bayesian spline-based model with 2
knots used by Guyot et al.15 would not converge with
the data used in this study. Instead, a 1-knot model was
tried, with a common intercept and all other parameters
allowed to vary with treatment, with the knot placed at
the end of follow-up for each short-term data set (pla-
cing the knot earlier had little impact on the predictions,
with a widely applicable information criterion [WAIC]32

giving differences of less than 2). However, this model
did not fit well with the no-treatment arm. The intercept
parameter was therefore allowed to vary by treatment,
but this model also would not converge. The final model
contained an intercept that varied according to treated v.
no treatment and other parameters that varied by each
treatment. Different prior precisions were used for the
hazard ratios tapering to 1 (Suppl. Table S4 in the online
appendix).

Model evaluation. Relative error was used to compare
the relative difference in predicted mean overall survival
of each intervention from the models under investigation
relative to the predicted mean overall survival from the
no-treatment arm predicted from the reference model for
the complete data set.

For difference in mean survival compared to the no-
treatment arm, absolute error was used to compare the
predictions with the reference model.

Relative error for mean overall survival. The relative
error in mean overall survival from that estimated from
the model being investigated v. the reference model was
defined as

Relative error=
�X T � �X Rj j

�X R

,

where �XT is the mean of the overall mean survival values
estimated from the model being investigated and �XR is
the mean overall survival estimated from the reference
model.

Absolute error for the difference in mean overall survival
compared with the no-treatment arm. The absolute error
for the difference in mean overall survival v. the no-
treatment arm v. that estimated from the reference model
was defined as

Absolute error indifference versus the control=

�X Ti � �X T1ð Þ � �X Ri � �X R1ð Þj j,

where i represents each treatment being investigated and
1 represents the no-treatment arm. This was estimated
for each treatment separately.

Sensitivity Analyses

One of the important assumptions when using external
data for only one of the treatment arms is what happens
to the treatment effect after follow-up. Although a ratio-
nale was given in the methods and a distribution was used
to account for a degree of uncertainty, the time it takes
for a hazard ratio to taper to 1 may be difficult to esti-
mate statistically and/or for medical experts to give an
opinion on. For systemic treatments, where patients may
not be expected to receive the treatment under investiga-
tion long after follow-up, such as those in the data used
by Guyot et al.,15 medical experts may be able to give a
reasonable estimate for how long they expect the treat-
ment effect to last. However, because the data used in this
study contained nonsystemic interventions that may have
long-lasting effects or even curative effects, there is greater
uncertainty over the treatment effect after follow-up.

For this study, 2 approaches using statistical methods
were considered to estimate the time for the hazard ratio
to equal 1. The first method involved plotting the
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predicted extrapolated hazard ratios from an ensemble of
parametric models and from stratified flexible spline–based
models with 3 knots for each follow-up time and the com-
plete data set. The second involved the use of the Bayesian
simultaneous model, with priors indicating a negligible
treatment effect after follow-up, specifically, normal priors
for the hazard ratios with a mean of 1 and precision of
100 within each year after follow-up. The first method
proved useful for the radiotherapy arm, which crossed the
hazard ratio of 1 line at 12 months, but it gave little insight
for the radiotherapy arm, and even models fitted to the
complete data set showed little or no evidence of hazard
ratio tapering for the radiotherapy arm. However, the
Bayesian approach did give reasonably consistent and
plausible estimates across all follow-up times studied for
the radiotherapy arm, and these results are presented. The
sensitivity analyses are presented in the appendix.

Statistical Software

Kaplan-Meier charts were digitized using Plot Digitizer.33

Frequentist survival analyses were conducted in R34 using
the eha package35 and flexsurv package.36 Smoothed
hazard rates were estimated using the survPresmooth
package.37 Area under the survival curves was estimated
using the MESS package.38 Charts were produced using
the ggplot2 package.39 Bayesian analyses were conducted
using JAGS.40 The WAIC values were estimated using
the loo package.32 Code is presented in the appendix for
some of the methods, which includes the Bayesian and
hybrid models.

Role of Funding

The study had no external funding source.

Results

The results of the evaluation statistics are presented for 1
to 10 years of follow-up. Example survival curves and
predicted mean overall survival distributions are pre-
sented for a 4-year follow-up. This time point was cho-
sen because it gave enough data to see whether a model
could fit the short-term data but left a large proportion
of the curve still unknown.

Example Results with 4 Years of Follow-up

Five of the parametric models (exponential, Weibull,
stratified Weibull, generalized gamma, and Royston and
Parmar24 1-knot spline model assuming proportional

hazards) were able to give reasonable predictions when
there was a small short-term benefit (radiotherapy) or
small long-term benefit (radiotherapy plus surgery).
However, none of the parametric models were able to
produce plausible predictions when there was a large
long-term benefit (surgery), given that the minimum age
of patients in the Ganti et al.18 study was 80 years.
The exponential model came closest to producing plausi-
ble estimates for all 10 follow-up times and was therefore
selected from among the parametric models. The online
appendix presents model predictions for the data cut at 4
years (Suppl. Figures S8–S9) as well as AIC and BIC fit
statistics (Suppl. Figure S10).

The hybrid models also had difficulty producing plau-
sible predictions, with the exponential model getting clo-
sest to giving plausible predictions for all treatments
across the 10 follow-up times. The hybrid exponential
model was able to give reasonable predictions when there
was a small short-term benefit (radiotherapy) or small
long-term benefit (radiotherapy plus surgery) but did not
give plausible predictions when there was a large long-
term benefit (surgery). Supplemental Figure S11 in the
online appendix presents model predictions for the data
cut at 4 years and Supplemental Table S1 in the appen-
dix presents the probability of best-fitting model.

Using the predicted hazard rates from the external
data and applying hazard ratio tapering forced all the
models to give plausible predictions (Suppl. Figures S12–
S14 in the online appendix).

Suppl. Figure S15 presents the survival predictions
from the 6 methods tested for the 4-year data set.
Applying the external data and hazard ratio tapering to
the most plausible parametric model (exponential) and
most plausible hybrid model (exponential) resulted in sur-
vival curves that appeared to fit all the treatment arms
well and gave plausible predictions for each treatment
arm. The ensemble of parametric models with external
data extrapolation also gave a good visual fit to the data
and included greater uncertainly as it was able to capture
the error for the choice of model. The Bayesian simulta-
neous model gave a reasonable fit to the data for the sce-
narios where there was a small benefit but underestimated
survival for the scenario with a large long-term benefit.

Supplemental Figure S16 presents the distributions
for predicted mean overall survival for the 6 methods,
together with the distributions estimated from the refer-
ence model fitted to the complete data set. All models
were able to give reasonable predictions for the scenario
with a small short-term benefit (radiotherapy). For the
scenario for a small long-term benefit, the 2 models that
did not use external data (simple exponential model and
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hybrid exponential model) underestimated survival; the
other models all gave predictions that matched closely
those from the complete data set. For the scenario for a
large long-term benefit, the 2 models that did not use
external data (simple exponential model and hybrid
exponential model) overestimated survival, whereas the
models that modeled the external data separately gave a
close fit to the predictions from the complete data. The
Bayesian simultaneous model appeared to underestimate
survival for this scenario.

Results from the Model Evaluation Statistics

Figure 3 (color version is provided in the online appen-
dix) presents the results from the evaluation statistics for
each of the 6 models investigated, for each of the 10
follow-up times, and by the 3 treatment scenarios. No
single model performed well across all 3 scenarios.

For the scenario for a small short-term benefit (radio-
therapy), the Guyot et al.15 model performed particularly
well, even with a short follow-up time (� 3 years) for all
the evaluation statistics. The models using the external

Figure 3 Model evaluation for predicted distributions for mean survival compared to the model fitted to the complete data set
and for predicted distributions for the difference in mean survival v. no treatment compared to the model fitted to the complete
data set. Relative error is the difference in predicted mean overall survival v. that estimated from the complete data divided by
the mean overall survival time estimated from the complete data set; absolute error is the difference in predicted mean overall
survival v. that estimated from the complete data.

Vickers 9



data with hazard ratio tapering performed less well com-
pared with the other models until a follow-up of 5 years
had been reached. This result may reflect the assumption
that the long-term hazard ratio tapering effect is the same
for all treatments. The hazard rates for radiotherapy
were greater than or equal to those estimated for the no-
treatment arm from 1 to 7 years (Suppl. Figure S2). If the
information from these smooth hazard plots had been
used and had the hazard ratio tapering assumption been
adjusted to no-treatment effect after follow-up, it is likely
these models would have performed better. However,
these results suggest that, unlike the other models that
use external data, the Guyot et al.15 model may be rea-
sonably robust in detecting when there is a small, short-
term treatment effect in the data, but a long-term treat-
ment effect is assumed when fitting the model.

For the scenario for a small long-term benefit (surgery
plus radiotherapy), where the proportional hazard
assumption approximately holds, all models performed
well with follow-up times of �2 years.

For the scenario of a large long-term benefit (sur-
gery), the methods that used long-term external data sep-
arately performed better than the other models. The
hybrid model without external data extrapolation per-
formed the worst across all follow-up times, followed by
the method described by Latimer4 and the Guyot et al.15

model. The models that used external data with hazard
ratio tapering were able to give reliable predictions with
follow-up times of �2 years.

When less informative priors for the hazard ratio
tapering (prior standard deviation of 4 for the hazard
ratio) were used as sensitivity analyses in the Guyot
et al.15 model, the model performed better in the scenario
with a large long-term benefit (surgery) and less well in
the scenario with a small long-term benefit (surgery plus
radiotherapy) arm. These results are therefore difficult to
generalize to other studies and were likely due to the 1-
spline knot being insufficient to describe the shape of the
hazard trajectory in each treatment group; convergence
could not be achieved with more complex models.

Further investigations were conducted for the hazard
ratio tapering assumptions used in the ensemble method
and the Guyot et al.15 model. Predicted hazard ratios
from these 2 methods for the 4-year data set and those
from parametric models fitted to the complete data are
presented in the online appendix (Suppl. Figure S17).
There was little or no indication of hazard ratios taper-
ing to 1 for the radiotherapy plus surgery and surgery
arms from models fitted to the complete data set, despite
both models needing hazard ratios to taper to 1 before
20 years to give biologically plausible predictions for the

surgery data. Figure 4 (color version presented in online
appendix) presents the hazard ratios from the Bayesian
simultaneous model for the 4-year follow-up data and
the predicted time at which the hazard ratio tapered to 1
for all 10 data sets. Sensitivity analyses for the time for
the hazard ratio to reach 1 (no treatment effect after
follow-up and hazard ratio tapers to 1 at 20 years) are
presented in the online appendix (Suppl. Figure S18).
These results show that the correct value is between 4
and 20 years. Changing the time for the hazard ratio to
taper to 1 from 10 to 13.5 years with a standard

Figure 4 The Guyot et al.15 model used to predict the time at
which the hazard ratios taper to 1. Predicted hazard ratio,
from the data cut at 4 years and priors for no treatment effect
after follow-up (A). Predicted time to a hazard ratio of 1 for
surgery from Bayesian models fitted to each of the 10 data
sets, with priors for no treatment effect after follow-up (B).
CrI, credible interval.
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deviation of 1.4 (Suppl. Figure S19 in the online appen-
dix) improved the predictions from the Guyot et al.15

model, but it had little impact on those from the method
based on the ensemble methods, suggesting the models
that used the external data separately may be reasonably
robust to the assumption regarding the treatment effect
after follow-up. This outcome is likely because the time
to the hazard ratio tapering to 1 for the models that used
the external data separately was assumed to be based on
a relatively broad distribution. For this study, making
the prior less informative with the Bayesian model did
not alleviate the problem, as this produced biologically
implausible predictions in the surgery arm and fitted the
data less well in the surgery plus radiotherapy arm. This
problem was likely due to the Bayesian model being too
simple to model all the treatment arms. This may not be
the case for other data sets.

Discussion

The results from this study suggest that when the treat-
ment benefit is small (hazard ratio = 1 6� 0.3), survival
curve extrapolation, without the use of external data,
may be reasonably accurate. If the survival at end of
follow-up is � 30%, then the Guyot et al.15 model is
likely to produce the most accurate predictions and
appeared in this study to be robust to overestimating the
time at which the hazard ratio equals 1. Under the
Guyot et al.15 model, while the prior mean tapers linearly
through time, the model allows for uncertainty about the
exact value of the hazard ratio at each time, by allowing
the hazard ratio at each time to vary independently
around the corresponding prior mean. Therefore, the
Guyot et al.15 model is robust to different assumptions
about the short-term treatment effect. The other meth-
ods that used external data performed less well when the
duration of treatment effect was small, which may have
been due to overestimating the time for the hazard ratio
to equal 1.

When the treatment benefit was large (in this study,
the hazard ratio was 0.37 for surgery) and treatment
effect covered a long duration, utilization of external
data with hazard ratio tapering was needed to produce
accurate long-term predictions. Simple parametric mod-
els with hazard ratio tapering may be sufficient if they fit
the data well and produce plausible long-term predic-
tions. For other data sets, more complex models may be
needed, such as the hybrid model with hazard ratio taper-
ing or the ensemble approach with hazard ratio tapering.
The Guyot et al.15 model performed less well for the sce-
nario with a large, long-term treatment effect. This may

have been due to this model being too simple to fit all
treatment arms well in this study and being sensitive to
the priors used for the hazard ratio tapering effect and
the assumed time to when hazard ratios equal 1. For the
other models that used external data, a broad distribu-
tion was assumed for the time to hazard ratio equaling 1,
which made them more robust to the uncertainty of when
the hazard ratio converged to 1.

It is likely that when clinical advice suggests the dura-
tion of treatment effect is short, the Guyot et al.15 model
may be reasonably accurate so long as the model fits all
study arms well, but when the duration of treatment
effect is believed to be long or unknown, separate model-
ing of the hazard ratio over time may be required, which
can capture a greater uncertainty. Where the treatment
benefit is expected to be large and the probability of an
event at end of follow-up has not reached 30%, then esti-
mates of mean overall survival from all models are likely
to be unreliable.

This study has shown that covariate data may not be
needed to match external data to trial data, as a time
acceleration adjustment may be sufficient. Matching
external data to RCT data may be problematic, as long-
term external data are likely to include patients who
entered the study at a longer time in the past compared
to those in the trial. Improvements in standard of care
over time are likely to be considerable in oncology and
other disease areas. If there is more than 1 source of
external data, sensitivity analyses could be conducted, or
a meta-survival model could be used such as that
described by Vickers et al.41

The data used in this study were from elderly patients
(�80 years old), in whom general age-related mortality
was a factor, which was not detectable in the short-term
data. This resulted in methods that did not use long-term
external data and general population data producing
biased predictions. For this study, the extrapolation of
parametric models described by Latimer4 and the hybrid
models described by Gelber et al.10 and Bagust and
Beale,11 which did not use external data, were not able
to provide accurate long-term predictions. This poor
accuracy was likely due to these models not accounting
for a change in hazard rates after follow-up and due to
the hybrid model giving large prediction errors because
the parametric model was fitted only to a reduced sample
of patients. It would be interesting to see how these mod-
els perform in younger patient populations.

Another limitation of this study was its reliance on
observational data. Differences in outcome were attrib-
uted to treatment for the purposes of this study.
However, treatment effect and the duration of treatment

Vickers 11



effect after follow-up could have been due, at least in
part, to the criteria used to assess how suitable patients
were to receive radiotherapy and/or surgery. However,
this issue is less relevant if the survival curve data used in
this study are representative of data from RCTs.

The utilization of external data and application of
hazard ratio tapering does have limitations. The most
important of which is likely to be the assumption regard-
ing what happens to the treatment effect after follow-up.
Grieve et al.6 argue that the time taken for the hazard
ratio to equal 1 could be estimated by modeling the time-
varying treatment effects from the RCT data. However,
Jackson et al.16 argue that long-term assumptions, such
as proportional hazards, are untestable from data. From
the data used in the current study, only the hazard ratios
for radiotherapy alone crossed the hazard ratio equal to
1 line in a short time (1 year). For the other treatments,
even with the complete data, there was little evidence of
what happens to hazard ratios after follow-up because
survival in the surgery arm was much longer than that in
the no-treatment arm, and the models fitted to the com-
plete data with time-varying effects showed little evidence
of the hazard rates converging. However, this study has
provided evidence that a Bayesian approach with priors
for no treatment effect after follow-up may help support
the choice of what to assume after follow-up, although it
is sensitive to the precision used for the priors. If this
method had been followed separately for each timepoint
and for each treatment, it is likely that model perfor-
mance would have been improved for the models using
external data for the scenarios tested where there was
only a short-term treatment effect. Sensitivity analyses
are still required to investigate the assumption of what
happens to the treatment effect after the end of follow-
up. Jackson et al.16 provide a thorough review of other
difficulties in survival curve extrapolation and the
assumptions needed.

If the current study is representative of oncology trial
data, extrapolating survival curves remains challenging,
especially when the treatment effect is large and the prob-
ability of no event is .70% at the end of follow-up. This
study suggests that under these circumstances, there is a
risk of stating mean survival estimates and differences in
mean survival that are statistically different from what
might be observed with mature data. The results from
this study support the argument that direct use of long-
term data is needed to make long-term predictions,
regardless of the extent to which the survival curves are
complete. In particular, the Guyot et al.15 study appeared
to be most suitable when the treatment effect was small
(hazard ratio in this study was 0.70) and the separate use

of external data appeared to be most appropriate when
the treatment effect was large (hazard ratio in this study
was 0.37).
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