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What We Will Show
•	 The large conduit arteries undergo rhythmic smooth muscle 

activation in synchrony with the cardiac cycle.

•	 The contractions are neurogenic and are denoted as pulse 
synchronized contractions (PSCs).

•	 PSCs are not a movement artifact from the pulse wave or 
heartbeat.

•	 The pacemaker for the PSCs is in the right atrium. 

•	 The smooth muscle wall of large arteries can contract as fast as 
the heartbeat.

What Was Believed in Gastrointestinal Smooth Muscle
An increase in intracellular calcium activates contractions in 

muscle cells. Because smooth muscle cells are long, narrow-diameter 
cells, it was believed that an influx of calcium could serve as the sole 
source of activator calcium for contractions following changes in 
membrane potential. Therefore, no depolarization-mediated release of 
intracellularly stored calcium occurred (Figures 1-3).

Windkessel Hypothesis: Otto Frank
•	 The prevailing hypothesis describing the behavior of the 

smooth muscle wall of the large arteries is that the wall does 
not contract in synchrony with the cardiac cycle but, rather, 
behaves as a passive elastic tube being rhythmically distended 
by pulsatile pressure changes. Neural input may modulate tone.

•	 Thus, it was believed that there was no vascular smooth muscle 
rhythmicity in synchrony with the cardiac cycle [4].
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  Calcium-free saline 

Normal saline 

Most Gastrointestinal Smooth Muscles Show
Rhythmic Membrane Potential Changes

Figure 1: Slow waves with spikes (upper trace) are the recognized trigger for 
contractions in the gastrointestinal tract. Following incubation in calcium-free 
saline, an alternative rhythmicity develops (lower trace) [1,2].

 

Normal saline 

Begin calcium-free 

Electrical and Mechanical Activity in Normal and Calcium-Free Solution 

Figure 2: During incubation in calcium-free solution (beginning with Trace 
B), an alternative electrical activity with contractions develops [1,2]. Since 
contractions are observed in Traces C and D calcium release is occurring.

 

Normal saline 

Calcium-free 

Rabbit Aortic Segments 

Figure 3: In contrast to gastrointestinal muscle segments, incubation of aortic 
segments from rabbits in normal saline is electrically quiescent (upper trace). 
In calcium-free solution, a fast rhythmic electrical event is produced (lower 
trace), but the muscle segments remain mechanically quiescent [3].
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Proponents of the Windkessel Hypothesis Have Ignored
•	 Heyman, in a series of studies in man and dog that were 

published between 1955 and 1961 [5-8], showed:

»» Extra-arterially recorded brachial pulses sometimes preceded 
intra-arterial pulses, suggesting arterial diameter varies in 
advance of pressure changes during the cardiac cycle.

»» The difference between the extra-arterially recorded and 
intra-arterially recorded pulse waves was abolished by stellate 
ganglion block, suggesting a neurally mediated event.

»» It was concluded that: “the behaviour of the artery in the 
pulse is contradictory to principles of passive elasticity 
but seem to provide evidence of active participation of the 
arterial wall….”

»» This series of papers has been largely ignored.

Hypothesis
Based on the ability of the aortic smooth muscle wall to generate 

fast rhythmic electrical activity in calcium-free solution (Figure 3), we 
sought to determine if the aortic smooth muscle wall could potentially 
show fast rhythmic contractile activity in vivo (Figures 4 and 5).

Considerable Effort Was Expended Proving PSCs Were 
Not Due to a Mechanical Artifact

•	 Eliminate pulse wave (Figures 6 and 7)

•	 Eliminate cardiac contractility (Figures 6 and 7)

•	 Dispel prejudice that smooth muscle cannot “contract that fast” 
(Figure 8) Vessels Where PSCs Have Been Observed

Species Vessel

Dog Coronary, femoral, carotid arteries

Rabbit Aorta

Cat Pulmonary artery

Rat Aorta

Human Brachial artery

From references [5-13].

PSCs
To evaluate whether the arterial smooth muscle wall is capable of 

contracting at the frequency of the heartbeat, electrical stimulation of 
the aorta in vivo was performed (Figure 8).

Conclusion

•	 The smooth muscle wall of the large arteries is capable of 
undergoing rapid contractions (PSCs) at the rate of the 
heartbeat.

•	 The contractions are neurogenic in origin as evidenced by 
blockade by TTX or lidocaine [references 9-13] and are not 
secondary to movement artifacts from the pulse wave or 
heartbeat.

•	 The pacemaker for the PSCs is in the right atrium.

•	 Direct electrical stimulation of the nerves within the aorta 
yields similar contractile activity.

Methodology for in vivo Mechanical Activity Recording 

Figure 4: Recording technique for measurement of contractile activity in the 
in vivo rabbit aorta. Configuration represents a segment of aorta having blood 
flow bypassed and tension (T) recorded from the bypassed segment. Pulse 
pressure changes (P) were recorded from the non-bypassed segment [9,10].

In Vivo Mechanical Activity Recorded From Rabbit Aorta 

Figure 5: Using the recording technique shown in Figure 4, rhythmic tension 
changes (pulse synchronized contractions [PSCs]) were recorded with a 1:1 
correspondence to the pulse wave [9-12].

(Ventricular pacing) 

In Bled Animals Rhythmic Activity Continued 

Figure 6: Following bleeding of rabbits, PSCs continued. In this configuration, 
ventricular muscle contractions were also recorded and pacing of the 
ventricles occurred. These studies (a) eliminated the pulse wave as an artifact, 
as animals were bled; (b) eliminated cardiac contractions as an artifact, as 
following excision of the right atrium with ventricular contractions paced to 
supra baseline levels, PSCs were not produced; and (c) suggested the PSC 
pacemaker is in the right atrium as excision of the right, but not left atrium, 
abolished PSCs [9].

Continuation of PSCs in Bled Animals during Right Atrial Pacing 

Figure 7: Shown above is an example of right atrial pacing in a bled rabbit. 
PSCs followed the pacing rate. In this and other animals, heart block developed 
with corresponding large amplitude ventricular contractions. This experiment 
supports both the pacemaker for PSCs residing in the right atrium and that 
PSCs are not secondary to a movement artifact from the heart [9].
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•	 PSCs represent a modified platform to understand the etiology 
of cardiovascular diseases allowing for the development of new 
therapeutic targets.

•	 PSCs have been recently reviewed [14,15].
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Local Application of TTX on Electrically Stimulated Aortic Contractions 

Figure 8: Electrical stimulation of the rat aorta in vivo produced contractions 
similar to PSCs. As PSCs are, these contractions were eliminated by the neural 
blocker tetrodotoxin (TTX). Black bars represent timing of stimulation [13].
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